第十一章答案(共18页).doc
《第十一章答案(共18页).doc》由会员分享,可在线阅读,更多相关《第十一章答案(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十一章答案第 11章 凝固缺陷及控制1. 何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析? . 22. 偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成? . 23. 焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位? . 34. 分析偏析对金属质量的影响? . . 35简述析出性气体的特征、形成机理及主要防止措施。 . 46、焊缝中的气孔有哪几种类型?有何特征? . . 47、试述夹杂物的形成原理、影响因素及主要防止措施。 . 58、何谓体收缩、线收缩、液态收缩、凝固收缩、固态收缩和收缩率? . 69、分析缩孔的形成过程,说
2、明缩孔与缩松的形成条件及形成原因的异同点。 . 6 10、分析灰铸铁和球墨铸铁产生缩孔、缩松的倾向性及影响因素。 . 7 11、简述顺序凝固原则和同时凝固原则各自的优缺点和适用范围。 . 8 12、焊件和铸件的热应力是如何形成的 ? 应采取哪些措施予以控制 ? . 9 13、简述凝固裂纹的形成机理及防止措施。 . . 10 14、何谓液化裂纹?出现在焊接接头的哪个区域?为什么? . 11 15. 试叙冷裂纹的种类及特征 . . 11 16、分析氢在形成冷裂纹中的作用,简述氢致裂纹的特征和机理。 . 12 17、为什么低合金钢冷裂纹容易出现在焊接热影响区及焊根、焊趾部位? . 12 18、何谓拘
3、束度和拘束应力?两者的影响因素有哪些?他们对冷裂纹的形成有何影响? . 13 19、如何防止焊件和铸件产生冷纹? . . 13第 11章 凝固缺陷及控制 习题解答1. 何谓枝晶偏析、晶界偏析、正偏析、负偏析、正常偏析、逆偏析和重力偏析?答:枝晶偏析 , 又称晶内偏析, 是在一个晶粒内出现的成分不均匀现象,常产生于具有结晶 温度范围、能够形成固溶体的合金中。对于溶质分配系数 k 0C 0者,称为正偏析; Cs 正常偏析:当合金的溶质分配系数 k 01时则与此相反, 越是后来结晶的固相,溶质浓度越低。按照溶质再分配规律,这些都是正常 现象,故称之为正常偏析。逆偏析:铸件凝固后常出现与正常偏析相反的
4、情况,即 k 01时,铸件表面或底部含溶 质元素较多,而中心部位或上部含溶质较少,这种现象称为逆偏析。重力偏析:重力偏析是由于重力作用而出现的化学不均匀现象, 通常产生于金属凝固前 和刚刚开始凝固之际。 当共存的液体和固体或互不相溶的液相之间存在密度差时, 将会产生 重力偏析。2. 偏析是如何形成的?影响偏析的因素有哪些?生产中如何防止偏析的形成?答:偏析主要是由于合金在凝固过程中扩散不充分、溶质再分配而引起的。影响偏析的因素有:1)合金液、固相线间隔; 2)偏析元素的扩散能力; 3)冷却条件。 针对不同种类的偏析可采取不同的防止方法,具体有:(1)生产中可通过扩散退火或均匀化退火来消除晶内偏
5、析,即将合金加热到低于固相 线 100200的温度,进行长时间保温,使偏析元素进行充分扩散,以达到均匀化; (2)预防和消除晶界偏析的方法与晶内偏析所采用的措施相同,即细化晶粒、均匀化 退火。 但对于氧化物和硫化物引起的晶界偏析, 即使均匀化退火也无法消除, 必须从减少合 金中氧和硫的含量入手。(3)向合金中添加细化晶粒的元素,减少合金的含气量,有助于减少或防止逆偏析的 形成。(4)降低铸锭的冷却速度,枝晶粗大,液体沿枝晶间的流动阻力减小,促进富集液的 流动,均会增加形成 V 形和逆 V 形偏析的倾向。(5)减少溶质的含量,采取孕育措施细化晶粒,加强固 -液界面前的对流和搅拌,均有 利于防止或
6、减少带状偏析的形成。(6) 防止或减轻重力偏析的方法有以下几种:1)加快铸件的冷却速度, 缩短合金处于 液相的时间,使初生相来不及上浮或下沉; 2)加入能阻碍初晶沉浮的合金元素。例如,在 Cu-Pb 合金中加少量 Ni ,能使 Cu 固溶体枝晶首先在液体中形成枝晶骨架,从而阻止 Pb 下 沉。再如向 Pb-17%Sn 合金中加入质量分数为 1.5%的 Cu ,首先形成 Cu-Pb 骨架,也可以减 轻或消除重力偏析; 3)浇注前对液态合金充分搅拌,并尽量降低合金的浇注温度和浇注速 度。3. 焊缝的偏析有哪些类型?为什么说熔合区是焊接的薄弱部位?答:焊缝的偏析主要有区域偏析和层状偏析。熔合区是焊接
7、的薄弱部位这是因为熔合区位于焊缝和母材的交界处, 是焊缝和母材的过 渡区, 熔合区存在着严重的化学成分不均匀性, 同时还存在着物理不均匀性。 因此熔合区在 组织和性能上也是不均匀的,因此成为焊接接头的薄弱部位。4. 分析偏析对金属质量的影响?答:偏析对合金的力学性能、抗裂性能及耐腐蚀性能等有程度不同的损害。1)晶内偏析的存在,使晶粒内部成分不均匀,导致合金的力学性能降低,特别是塑性 和韧性降低。此外,晶内偏析还会引起合金化学性能不均匀,使合金的抗蚀性能下降。 2)晶界偏析比晶内偏析的危害性更大,它既能降低合金的塑性和高温性能,又能增加 热裂倾向,因此必须加以防止。3)正常偏析的存在使铸件性能不
8、均匀,随后的加工和处理也难以根本消除,故应采取 适当措施加以控制。4)逆偏析会降低铸件的力学性能、气密性和切削加工性能。5)层状偏析是不连续的具有一定宽度的链状偏析带,带中常集中一些有害元素(碳、 硫、磷等) ,并常常出现气孔等缺陷。层状偏析也会使焊缝的力学性能不均匀,抗腐蚀性能 下降以及断裂韧性降低等。偏析也有有益的一面,如利用偏析现象可以净化或提纯金属等。5简述析出性气体的特征、形成机理及主要防止措施。答:液态金属在冷却凝固过程中, 因气体溶解度下降, 析出的气体来不及逸出而产生的气孔 称为析出性气孔。这类气孔主要是氢气孔和氮气孔。析出性气孔通常分布在铸件的整个断面或冒口、 热节等温度较高
9、的区域。 当金属含气量 较少时,呈裂纹多角形状;而含气量较多时,气孔较大,呈团球形。焊缝金属产生的析出性气孔多数出现在焊缝表面。 氢气孔的断面形状如同螺钉状, 从焊 缝表面上看呈喇叭口形,气孔四周有光滑的内壁。氮气孔一般成堆出现,形似蜂窝。析出性气体的形成机理是:结晶前沿, 特别是枝晶间的气体溶质聚集区中, 气体的含量 将超过其饱和量,被枝晶封闭的液相内则具有更大的过饱和含量和析出压力,而液 -固界面 处气体的含量最高, 并且存在其他溶质的偏析及非金属夹杂物, 当枝晶间产生收缩时, 该处 极易析出气泡,且气泡很难排除,从而保留下来形成气孔。防止析出性气体的措施主要有以下几个措施:(1) 消除气
10、体来源 保持炉料清洁、 干燥,焊件和焊丝表面无氧化物、 水分和油污等; 控制型砂、芯砂的水分,焊前对焊接材料(焊条、焊剂、保护气体等)进行烘干、去水或干 燥处理; 限制铸型中有机粘结剂的用量和树脂的含氮量; 加强保护, 防止空气侵入液态金属。 (2)采用合理的工艺 焊接时采用短弧焊有利于防止氮气孔,气体保护焊时用活性气 体保护有利于防止氢气孔, 选用氧化铁型焊条可提高抗锈能力。 金属熔炼时, 控制熔炼温度 勿使其过高,或采用真空熔炼,可降低液态金属的含气量。(3)对液态金属进行除气处理 金属熔炼时常用的除气方法有浮游去气法和氧化去气 法。前者是向金属液中吹入不溶于金属的气体(如惰性气体、氮气等
11、) ,使溶解的气体进入 气泡而排除;后者是对能溶解氧的液态金属(如铜液)先吹氧去氢,再加入脱氧剂去氧。 焊接时可利用焊条药皮或焊剂中的 CaF 2和碳酸盐高温分解出的 CO 2气体进行除氢。 (4)阻止液态金属内气体的析出 提高金属凝固时的冷却速度和外压,可有效阻止气 体的析出。如采用金属型铸造,密封加压等方法,均可防止析出性气孔的产生。6、焊缝中的气孔有哪几种类型?有何特征?答:焊缝中的气孔有三种类型:析出性气孔、侵入性气孔、反应性气孔。其特征分别为:(1) 析出性气孔为液态金属冷却时因溶解度下降析出的气体, 主要为氢气孔和氮气孔。 该气孔主要出现在焊缝表面, 氢气孔断面形状如螺钉从焊缝表面
12、看呈喇叭口型, 气孔四周有 光滑的内避;氮气孔一般成堆出现,形似蜂窝。(2)侵入性气孔一般为水蒸气、一氧化碳、二氧化碳、氢、氮和碳氢化合物。其数量 较少、体积较大、孔壁光滑、表面有氧化色。(3)反应性气孔主要为 H 2、 CO 和 N 2。主要是由液态金属内部合金元素之间或与非金 属夹杂物发生化学反应产生的蜂窝状气孔, 呈梨状或团球状均匀分布。 碳刚焊缝因冶金反应 生成的 CO 气孔则沿焊缝结晶方向呈条虫状分布。7、试述夹杂物的形成原理、影响因素及主要防止措施。答:夹杂物是指金属内部或表面存在的和基本金属成分不同的物质, 它主要来源于原材料本 身的杂质及金属在熔炼、浇注和凝固过程中与非金属元素
13、或化合物发生反应而形成的产物。 夹杂物按照不同的标准可以分为很多种类,不同夹杂物的形成机理等也不尽相同: (1)一次夹杂物 在金属熔炼过程中及炉前处理时,液态金属内会产生大量的一次非 金属夹杂物。这类夹杂物的形成大致经历了两个阶段,即夹杂物的偏晶析出和聚合长大。 排除液态金属中一次夹杂物的途径:1)加熔剂; 2)过滤法; 3)排除和减少液态金属 中气体的措施,如合金液静置处理、浮游法净化、真空浇注等。(2)二次氧化夹杂物 液态金属与大气或氧化性气体接触时,其表面很快会形成一层 氧化薄膜。 在浇注及充型过程中,由于金属流动时产生的紊流、涡流及飞溅等,表面氧化膜 会被卷入液态金属内部。 此时因液体
14、的温度下降较快, 卷入的氧化物在凝固前来不及上浮到 表面,从而在金属中形成二次氧化夹杂物。二次氧化夹杂物的影响因素:1)化学成分; 2)液流特性; 3)熔炼温度。防止和减少二次氧化夹杂物的途径1)正确选择合金成分,严格控制易氧化元素的含量。2)采取合理的浇注系统及浇注工艺,保持液态金属充型过程平稳流动。3)严格控制铸型水分,防止铸型内产生氧化性气氛。还可加入煤粉等碳质材料,或采 用涂料,以形成还原性气氛。4)对要求高的重要零件或易氧化的合金,可以在真空或保护性气氛下浇注。(3)偏析夹杂物 合金结晶时,由于溶质再分配,在凝固区域内合金及杂质元素将高 度富集于枝晶间尚未凝固的液相内。在一定条件(温
15、度、压力等)下,靠近液固界面的“液 滴”有可能具备产生某种夹杂物的条件,这时处于过饱和状态的液相 L 1将发生 L 1 +L 2偏晶反应,析出非金属夹杂物 。偏析夹杂物的大小主要由合金的结晶条件和成分来决定。凡是能细化晶粒的条件都能减小偏析夹杂物的尺寸;形成夹杂物的元素原始含量越高,枝晶间偏析液相中富集该元素的数量越多, 同样结晶条件下, 产生的偏析夹杂物越大, 数量 也越多。8、何谓体收缩、线收缩、液态收缩、凝固收缩、固态收缩和收缩率?(1)体收缩:宏观体积收缩现象;(2)线收缩:三维尺寸的减少,是尺寸长度缩减的一种物理现象;(3)液态收缩:液态金属从浇注温度 T 浇 冷却到液相线温度 T
16、L 产生的体收缩(体积改 变量) ,称为液态收缩。(4)凝固收缩:金属从液相线冷却到固相线所产生的体收缩,称为凝固收缩。(5)固态收缩:金属在固相线以下发生的体收缩,称为固态收缩。(6)收缩率:即收缩的程度,分液态收缩率、凝固收缩率和固态收缩率。液态收缩率:%-(=浇 液 液 100) L V V T T ,式中, V 液 是液态体收缩率(%) ; V 液 是金属的液态体收缩系数( -1) ; T 浇 是液态金属的浇注温度() ; T L 是液相线温度() ;凝固收缩率:%-(+=) (凝 100) ) (S L S L V S L V V T T ,式中, V 凝 是凝固体收缩率; V (L
17、 S ) 是因状态改变的体收缩; V (L S ) 是凝固温度范围内的体收缩系数;固态收缩率中包括体收缩率和线收缩率,固态体收缩率表示为:%(=固固 100) 0S -T T V V ,式中, V 固 是金属的固态体 收缩率 (%) ; V 固 是金属的固态体收缩系数( -1) ; T S 是固相线温度 () ; T 0是室温 () 。 固态收缩也常用线收缩率表示, %100) (0-=T T S L L ,式中 , L 是金属的线收缩率 (%) , L V 固 /3; L 是金属的固态线收缩系数( -1) , L V 固 /3。9、分析缩孔的形成过程,说明缩孔与缩松的形成条件及形成原因的异同
18、点。答:纯金属、 共晶成分合金和结晶温度范围窄的合金, 在一般铸造条件下按由表及里逐层凝 固的方式凝固。 由于金属或合金在冷却过程中发生的液态收缩和凝固收缩大于固态收缩, 从 而在铸件最后凝固的部位形成尺寸较大的集中缩孔。其形成过程如下图所示。铸件中缩孔形成过程示意图从图中可以看出,液态金属充满型腔后, 由于铸型的吸热作用,其温度下降,产生液态 收缩。此时,液态金属可通过浇注系统得到补充,因而型腔始终保持充满状态(图 a ) 。当 铸件外表温度降至凝固温度时, 铸件表面就凝固成一层固态外壳, 并将内部液体包住 (图 b ) 。 这时, 内浇口已经凝结。 当铸件进一步冷却时, 壳内的液态金属因温
19、度降低一方面产生液态 收缩, 另一方面继续凝固使壳层增厚并产生凝固收缩; 与此同时, 壳层金属也因温度降低而 发生固态收缩。 如果液态收缩和凝固收缩造成的体积缩减等于固态收缩引起的体积缩减, 则 壳层金属和内部液态金属将紧密接触, 不会产生缩孔。 但是, 由于金属的液态收缩和凝固收 缩大于壳层的固态收缩,壳内液体与外壳顶面将发生脱离(图 c ) 。随着冷却的进行,固态 壳层不断加厚, 内部液面不断下降。 当金属全部凝固后, 在铸件上部就形成了一个倒锥形的 缩孔(图 d ) 。形成缩松和缩孔的基本原因是相同的,即金属的液态收缩和凝固收缩之和大于固态收 缩。 但形成条件是不同的:产生缩孔的条件是铸
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十一 答案 18
限制150内