高中物理新课程奥赛竞赛讲义第04部分-曲线运动-万有引力(共9页).doc
《高中物理新课程奥赛竞赛讲义第04部分-曲线运动-万有引力(共9页).doc》由会员分享,可在线阅读,更多相关《高中物理新课程奥赛竞赛讲义第04部分-曲线运动-万有引力(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第四部分 曲线运动 万有引力第一讲 基本知识介绍一、曲线运动1、概念、性质2、参量特征二、曲线运动的研究方法运动的分解与合成1、法则与对象2、两种分解的思路a、固定坐标分解(适用于匀变速曲线运动)建立坐标的一般模式沿加速度方向和垂直加速度方向建直角坐标;提高思想根据解题需要建直角坐标或非直角坐标。b、自然坐标分解(适用于变加速曲线运动)基本常识:在考查点沿轨迹建立切向、法向n坐标,所有运动学矢量均沿这两个方向分解。动力学方程,其中改变速度的大小(速率),改变速度的方向。且= m,其中表示轨迹在考查点的曲率半径。定量解题一般只涉及法向动力学方程。三、两种典型的曲线运动1
2、、抛体运动(类抛体运动)关于抛体运动的分析,和新课教材“平跑运动”的分析基本相同。在坐标的选择方面,有灵活处理的余地。2、圆周运动匀速圆周运动的处理:运动学参量v、n、a、f、T之间的关系,向心力的寻求于合成;临界问题的理解。变速圆周运动:使用自然坐标分析法,一般只考查法向方程。四、万有引力定律1、定律内容2、条件a、基本条件b、拓展条件:球体(密度呈球对称分布)外部空间的拓展-对球体外一点A的吸引等效于位于球心的质量为球的质量的质点对质点A的吸引;球体(密度呈球对称分布)内部空间的拓展“剥皮法则”-对球内任一距球心为r的一质点A的吸引力等效于质量与半径为 r的球的质量相等且位于球心的质点对质
3、点A的吸引;球壳(密度呈球对称分布)外部空间的拓展-对球壳外一点A的吸引等效于位于球心的质量为球壳的质量的质点对质点A的吸引;球体(密度呈球对称分布)内部空间的拓展-对球壳内任一位置上任一质点A的吸引力都为零;并且根据以为所述,由牛顿第三定律,也可求得一质点对球或对球壳的吸引力。c、不规则物体间的万有引力计算分割与矢量叠加3、万有引力做功也具有只与初末位置有关而与路径无关的特征。因而相互作用的物体间有引力势能。在任一惯性系中,若规定相距无穷远时系统的万有引力势能为零,可以证明,当两物体相距为r时系统的万有引力势能为EP = G五、开普勒三定律天体运动的本来模式与近似模式的差距,近似处理的依据。
4、六、宇宙速度、天体运动1、第一宇宙速度的常规求法2、从能量角度求第二、第三宇宙速度万有引力势能EP = G3、解天体运动的本来模式时,应了解椭圆的数学常识第二讲 重要模型与专题一、小船渡河物理情形:在宽度为d的河中,水流速度v2恒定。岸边有一艘小船,保持相对河水恒定的速率v1渡河,但船头的方向可以选择。试求小船渡河的最短时间和最小位移。模型分析:小船渡河的实际运动(相对河岸的运动)由船相对水流速度v1和水相对河岸的速度v2合成。可以设船头与河岸上游夹角为(即v1的方向),速度矢量合成如图1(学生活动)用余弦定理可求v合的大小v合=(学生活动)用正弦定理可求v合的方向。令v合与河岸下游夹角为,则
5、= arcsin1、求渡河的时间与最短时间由于合运动合分运动具有等时性,故渡河时间既可以根据合运动求,也可以根据分运动去求。针对这一思想,有以下两种解法解法一: t = 其中v合可用正弦定理表达,故有 t = = 解法二: t = = = 此外,结合静力学正交分解的思想,我们也可以建立沿河岸合垂直河岸的坐标x、y,然后先将v1分解(v2无需分解),再合成,如图2所示。而且不难看出,合运动在x、y方向的分量vx和vy与v1在x、y方向的分量v1x、v1y以及v2具有以下关系vy = v1yvx = v2 - v1x由于合运动沿y方向的分量Sy d ,故有解法三: t = = = t ()函数既已
6、得出,我们不难得出结论当= 90时,渡河时间的最小值 tmin = (从“解法三”我们最容易理解t为什么与v2无关,故tmin也与v2无关。这个结论是意味深长的。)2、求渡河的位移和最小位移在上面的讨论中,小船的位移事实上已经得出,即S合 = = = 但S合()函数比较复杂,寻求S合的极小值并非易事。因此,我们可以从其它方面作一些努力。将S合沿x、y方向分解成Sx和Sy ,因为Sy d ,要S合极小,只要Sx极小就行了。而Sx()函数可以这样求解法一: Sx = vxt =(v2 - v1x) =(v2 v1cos)为求极值,令cos= p ,则sin= ,再将上式两边平方、整理,得到这是一个
7、关于p的一元二次方程,要p有解,须满足0 ,即整理得 所以,Sxmin= ,代入Sx()函数可知,此时cos= 最后,Smin= = d此过程仍然比较繁复,且数学味太浓。结论得出后,我们还不难发现一个问题:当v2v1时,Smind ,这显然与事实不符。(造成这个局面的原因是:在以上的运算过程中,方程两边的平方和开方过程中必然出现了增根或遗根的现象)所以,此法给人一种玄乎的感觉。解法二:纯物理解矢量三角形的动态分析从图2可知,Sy恒定,Sx越小,必有S合矢量与下游河岸的夹角越大,亦即v合矢量与下游河岸的夹角越大(但不得大于90)。我们可以通过v1与v2合成v合矢量图探讨v合与下游河岸夹角的最大可
8、能。先进行平行四边形到三角形的变换,如图3所示。当变化时,v合矢量的大小和方向随之变化,具体情况如图4所示。从图4不难看出,只有当v合和虚线半圆周相切时,v合与v2(下游)的夹角才会最大。此时,v合v1 ,v1、v2和v合构成一个直角三角形,max = arcsin并且,此时:= arccos有了max的值,结合图1可以求出:S合min = d最后解决v2v1时结果不切实际的问题。从图4可以看出,当v2v1时,v合不可能和虚线半圆周相切(或max = arcsin无解),结合实际情况,max取90即:v2v1时,S合min = d ,此时,= arccos结论:若v1v2 ,= arccos时
9、,S合min = d 若v2v1 ,= arccos时,S合min = d二、滑轮小船物理情形:如图5所示,岸边的汽车用一根不可伸长的轻绳通过定滑轮牵引水中的小船,设小船始终不离开水面,且绳足够长,求汽车速度v1和小船速度v2的大小关系。模型分析:由于绳不可伸长,滑轮右边绳子缩短的速率即是汽车速度的大小v1 ,考查绳与船相连的端点运动情况,v1和v2必有一个运动的合成与分解的问题。(学生活动)如果v1恒定不变,v2会恒定吗?若恒定,说明理由;若变化,定性判断变化趋势。结合学生的想法,介绍极限外推的思想:当船离岸无穷远时,绳与水的夹角趋于零,v2v1 。当船比较靠岸时,可作图比较船的移动距离、绳
10、子的缩短长度,得到v2v1 。故“船速增大”才是正确结论。故只能引入瞬时方位角,看v1和v2的瞬时关系。(学生活动)v1和v2定量关系若何?是否可以考虑用运动的分解与合成的知识解答?针对如图6所示的两种典型方案,初步评说甲图中v2 = v1cos,船越靠岸,越大,v2越小,和前面的定性结论冲突,必然是错误的。错误的根源分析:和试验修订本教材中“飞机起飞”的运动分析进行了不恰当地联系。仔细比较这两个运动的差别,并联系“小船渡河”的运动合成等事例,总结出这样的规律合运动是显性的、轨迹实在的运动,分运动是隐性的、需要分析而具有人为特征(无唯一性)的运动。解法一:在图6(乙)中,当我们挖掘、分析了滑轮
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中物理 新课程 竞赛 讲义 04 部分 曲线运动 万有引力
限制150内