函数中存在性和任意性问题分类解析(共7页).doc
《函数中存在性和任意性问题分类解析(共7页).doc》由会员分享,可在线阅读,更多相关《函数中存在性和任意性问题分类解析(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数中存在性和任意性问题分类解析1.,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.例1 已知函数和函数,若存在,使得成立,则实数的取值范围是( ) 解 设函数与在上的值域分别为与,依题意.当时,则,所以在上单调递增,所以即.当时,所以单调递,所以即.综上所述在上的值域.当时,又,所以在在上单调递增,所以即,故在上的值域.因为,所以或解得,故应选.2.对,使得,等价于函数在上的值域是函数在上的值域的子集,即.例2(2011湖北八校第二次联考)设,.若,使成立,则实数的取值范围为;若,使得,则实数的取值范围为解 依题意实数的取值范围就是函数的值域.设,则问题
2、转化为求函数的值域,由均值不等式得,故实数的取值范围是.依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由知,易求得函数的值域,则当且仅当即,故实数的取值范围是.例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围. 解 (1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围.当时, 由得,故在上单调递减,所以即,于是.因,由得.当时,故在上单调递增,所以即,于是.因为,则当且仅当,即.当时,同上可求得.综合知所求实数的取值范围是.3.已知是在闭区间的上连续
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 存在 任意 问题 分类 解析
限制150内