函数值域求法十五种(共11页).doc
《函数值域求法十五种(共11页).doc》由会员分享,可在线阅读,更多相关《函数值域求法十五种(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。基本知识 1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。2.函数值域常见的求解思路: 划归为几类常见函数,利用这些函数的图象和性质求解。 反
2、解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。 可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。 特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 可以用函数的单调性求值域。 其他。 1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。解: 显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。例2. 求函数的值域。解:将函
3、数配方得:由二次函数的性质可知:当x=1时,当x=-1时,故函数的值域是:4,83. 判别式法例3. 求函数的值域。解:两边平方整理得:(1) 解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间0,2上,即不能确保方程(1)有实根,由 求出的范围可能比y的实际范围大,故不能确定此函数的值域为。可以采取如下方法进一步确定原函数的值域。 代入方程(1)解得: 即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定
4、原函数的值域。例4. 求函数值域。解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。例5. 求函数的值域。解:由原函数式可得:,可化为: 即即 解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。解:令则在2,10上都是增函数所以在2,10上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y0,故原函数的值域为7. 换元法通过简单
5、的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作 例8. 求函数的值域。解:因即故可令故所求函数的值域为例9. 求函数的值域。解:原函数可变形为:可令,则有当时,当时,而此时有意义。故所求函数的值域为例10. 求函数,的值域。解:令,则由 且可得:当时,当时,故所求函数的值域为。例11. 求函数的值域。解:由,可得故可令 当时,当时,故所求函数的值域为:8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目
6、。,只做中学生最喜欢、最实用的学习论坛,地址 手机版地址 例12. 求函数的值域。解:原函数可化简得:y=|x-2|+|x+8|上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知,当点P在线段AB上时,y=|x-2|+|x+8|=|AB|=10当点P在线段AB的延长线或反向延长线上时,y=|x-2|+|x+8|AB|=10故所求函数的值域为:例13. 求函数的值域。解:原函数可变形为:上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时,故所求函数的值域为例14. 求函数的值域。解:将函数变形为:上式可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 值域 求法 十五 11
限制150内