材料成型原理第十三章答案(共10页).doc
《材料成型原理第十三章答案(共10页).doc》由会员分享,可在线阅读,更多相关《材料成型原理第十三章答案(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上14 思考与练习1. 什么叫张量?张量有什么性质?答:张量:由若干个当坐标系改变时满足转换关系的分量组成的集合,称为张量,需要用空间坐标系中的三个矢量,即9个分量才能完整地表示。它的重要特征是在不同的坐标系中分量之间可以用一定的线性关系来换算。基本性质:1) 张量不变量 张量的分量一定可以组成某些函数,这些函数值与坐标轴无关,它不随坐标而改变,这样的函数,叫做张量不变量。二阶张量存在三个独立的不变量。2) 张量可以叠加和分解 几个同阶张量各对应的分量之和或差定义为另一个同阶张量。两个相同的张量之差定义为零张量。3) 张量可分为对称张量、非对称张量、反对称张量 若张量具
2、有性质,就叫对称张量;若张量具有性质,且当i=j时对应的分量为0,则叫反对称张量;如果张量,就叫非对称张量。任意非对称张量可以分解为一个对称张量和一个反对称张量。4) 二阶对称张量存在三个主轴和三个主值 如果以主轴为坐标轴,则两个下角标不同的分量均为零,只留下两个下角标相同的三个分量,叫作主值。2. 如何表示任意斜微分面上的应力?答:若过一点的三个互相垂直的微分面上的九个应力分量已知,则借助静力平衡条件,该点任意方向上的应力分量可以确定。如图14-1所示,设过Q点任一斜切面的法线N与三个坐标轴的方向余弦为l,m,n,图14-1 任意斜切微分面上的应力l=cos(N,x); m=cos(N,y)
3、; n=cos(N,z)。 若斜微分面ABC的面积为dF, 微分面OBC(x面)、OCA(y面)、OAB(z 面)的微分面积分别为dFx、dFy、dFz, 则各微分面之间的关系为dFx=ldF;dFy= mdF; dFz=ndF又设斜微分面ABC上的全应力为S,它在三坐标轴方向上的分量为Sx 、Sy 、Sz,由静力平衡条件,得:整理得 (14-6)用角标符号简记为 显然,全应力 斜微分面上的正应力为全应力在法线N方向的投影,它等于,在N方向上的投影之和,即 (14-7)斜切微分面上的切应力为 (14-8)所以,已知过一点的三个正交微分面上9个应力分量,可以求出过该点任意方向微分面上的应力,也就
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 成型 原理 第十三 答案 10
限制150内