三角函数公式大全及其推导方法(共35页).docx
《三角函数公式大全及其推导方法(共35页).docx》由会员分享,可在线阅读,更多相关《三角函数公式大全及其推导方法(共35页).docx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上三角函数公式大全及其推导1. 三角函数的定义Figure I由此,我们定义:如Figure I, 在ABC中备注:当用一个字母或希腊字母表示角时,可略写符号,但用三个子母表示时,不能省略。在本文中,我们只研究sin、cos、tan。2. 额外的定义3. 简便计算公式证明:证完4. 任意三角形的面积公式Figure II如FigureII,5. 余弦定理:任意三角形一角的余弦等于两邻边的平方和减对边的平方之差与两邻边积的两倍之比。证明:如Figure II,证完6. 海伦公式证明:如Figure II,7. 正弦定理Figure III如 Figure III,c为AB
2、C外接圆的直径,同理:8. 加法定理(1) 两角差的余弦Figure IV如 Figure IV, 令AO=BO=r点A的横坐标为点A的纵坐标为点B的横坐标为点B的纵坐标为由余弦公式可得:综上得:(2) 两角和的余弦(3) 两角和的正弦(4) 两角差的正弦(5) 两角和的正切(6) 两角差的正切9. 两倍角公式10. 积化和差公式11. 和差化积公式(1)设:A=+, B=-,(2)设:12. 其他常用公式13. 特殊的三角函数值sin01cos10tan01N/A14. 关于机器算法在计算机中,三角函数的算法是这样的,其中x用弧度计算推导公式:(a+b+c)/(sinA+sinB+sinC)
3、=2R(其中,R为外接圆半径) 由正弦定理有a/sinA=b/sinB=c/sinC=2R所以a=2R*sinAb=2R*sinBc=2R*sinC加起来a+b+c=2R*(sinA+sinB+sinC)带入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(
4、1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinA?CosA对数的性质及推导用表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若an=b(a0且a1)则n=log(a)(b)基本性质:1.a(log(a)(b)=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)
5、(Mn)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的n=log(a)(b)带入an=b)2.MN=M*N由基本性质1(换掉M和N)alog(a)(MN)=alog(a)(M)*alog(a)(N)由指数的性质alog(a)(MN)=alog(a)(M)+log(a)(N)又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)alog(a)(M/N)=alog(a)(M)/alog(a)(N)由指数的性质alog(a)(M/N)=alog(a)(M)-log(a)(N)又因
6、为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理Mn=Mn由基本性质1(换掉M)alog(a)(Mn)=alog(a)(M)n由指数的性质alog(a)(Mn)=alog(a)(M)*n又因为指数函数是单调函数,所以log(a)(Mn)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=alog(a)(N)a=blog(b)(a)综合两式可得N=blog(b)(a)log(a)(N)=blog(a)(N)*log(b)(a)又因为N=blog(b)(N)所以blog(b)(
7、N)=blog(a)(N)*log(b)(a)所以log(b)(N)=log(a)(N)*log(b)(a)这步不明白或有疑问看上面的所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(an)(bm)=m/n*log(a)(b)推导如下由换底公式lnx是log(e)(x),e称作自然对数的底log(an)(bm)=ln(an)/ln(bn)由基本性质4可得log(an)(bm)=n*ln(a)/m*ln(b)=(m/n)*ln(a)/ln(b)再由换底公式log(an)(bm)=m/n*log(a)(b)-(性质及推导完)公式三:log(a)(b)=
8、1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)-取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1平方关系:sin2()+cos2()=1tan2()+1=sec2()cot2()+1=csc2()商的关系:tan=sin/coscot=cos/sin倒数关系:tancot=1sincsc=1cossec=1万能公式:sin=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2(/2)常用的诱导公式有
9、以下几组:公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)sincos(2k)costan(2k)tancot(2k)cot公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式三:任意角与-的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)sincos(2)co
10、stan(2)tancot(2)cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB
11、-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB)Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)平方关系:sin2()+cos2()=1tan2()+1=sec2()cot2()+1=csc2()积的关系:sin=tan*coscos=cot*sintan=sin*seccot=cos*cscsec=tan*csccsc=sec*cot倒数关系:tancot=1sincsc=1cossec=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于
12、对边比邻边,三角函数恒等变形公式两角和与差的三角函数:cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)辅助角公式:Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)倍角公式:sin(2)=2sincos=2/(tan+cot)cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2()tan(2)=2tan/1-
13、tan2()三倍角公式:sin(3)=3sin-4sin3()cos(3)=4cos3()-3cos半角公式:sin(/2)=(1-cos)/2)cos(/2)=(1+cos)/2)tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin降幂公式sin2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=vercos(2)/2tan2()=(1-cos(2)/(1+cos(2)万能公式:sin=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 公式 大全 及其 推导 方法 35
限制150内