我国粮食生产与相关投入计量经济学模型分析(共13页).doc
《我国粮食生产与相关投入计量经济学模型分析(共13页).doc》由会员分享,可在线阅读,更多相关《我国粮食生产与相关投入计量经济学模型分析(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上我国粮食生产与相关投入计量经济学模型分析一 理论分析二 建立模型以19802003年各年粮食产量作为被解释变量,解释变量中,包括农业化肥施用量,粮食播种面积,成灾面积,农业机械总动力,农业劳动力。模型设定为其中 Y:粮食产量(万吨) X1:农业化肥试用量(万吨) X2:粮食播种面积(千公顷) X3:成灾面积(千公顷) X4:农业机械总动力(万千瓦) X5:农业劳动力(万人)显著性水平0.05三 估计参数假定模型中随机项满足基本假定,用OLS法估计参数,估计结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/1
2、5/06 Time: 00:16Sample: 1980 2003Included observations: 24VariableCoefficientStd. Errort-StatisticProb. C-5410.50021545.50-0.0.8046X18.1.5.0.0001X20.0.1.0.2949X3-0.0.-2.0.0381X4-0.0.-1.0.0718X50.0.1.0.1542R-squared0. Mean dependent var42847.33Adjusted R-squared0. S.D. dependent var5325.186S.E. of re
3、gression1676.383 Akaike info criterion17.89898Sum squared resid Schwarz criterion18.19350Log likelihood-208.7878 F-statistic42.81740Durbin-Watson stat0. Prob(F-statistic)0.估计方程为t: (-0.25) (5.07) (1.08) (-2.24) (-1.91) (1.49) =0.9224 F=42.8174由于,未通过t检验,而且前的符号经济意义也不合理,因此解释变量键可能存在多重共线性。四 多重共线性分析1. 检验简单
4、相关系数,的相关系数表如下:X1X2X3X4X5X1 1.-0. 0. 0. 0.X2-0. 1.-0.-0.-0.X3 0.-0. 1. 0.-0.X4 0.-0. 0. 1. 0.X5 0.-0.-0. 0. 1.2. 用Y分别关于,作一元线性回归得:变量参数估计值4.255-0.3480.4690.2813.235t统计量8.29-1.192.5285.1184.5220.75760.06060.22510.54350.4817 由上表知,解释变量的重要程度依次为,3. 将各解释变量按以上顺序分别引入基本回归模型中,并用OLS法估计。先把引入模型,用Y关于,做回归并用OLS法估计得:De
5、pendent Variable: YMethod: Least SquaresDate: 12/15/06 Time: 18:13Sample: 1980 2003Included observations: 24VariableCoefficientStd. Errort-StatisticProb. C29444.911146.28725.687210.0000X110.230871.7.0.0000X4-0.0.-4.0.0001R-squared0. Mean dependent var42847.33Adjusted R-squared0. S.D. dependent var53
6、25.186S.E. of regression1904.447 Akaike info criterion18.05824Sum squared resid Schwarz criterion18.20550Log likelihood-213.6989 F-statistic79.41445Durbin-Watson stat0. Prob(F-statistic)0. =0.9224 t (25.69)(7.82) (-4.75)可见,引入后,拟合优度有所提高,但回归参数的符号不对,所以应该把从模型中删除。按照上面的方法依次引入,经过检验均可保留。删去不符合条件的解释变量,得到Y关于,的
7、方程: (-1.95) (8.51) (2.37) (-2.39) (2.34) =0.9067 F=46.1480 DW=0.38Dependent Variable: YMethod: Least SquaresDate: 12/15/06 Time: 12:41Sample: 1980 2003Included observations: 24VariableCoefficientStd. Errort-StatisticProb. C-33196.4016990.08-1.0.0656X15.0.8.0.0000X20.0.2.0.0286X3-0.0.-2.0.0273X50.0.2
8、.0.0303R-squared0. Mean dependent var42847.33Adjusted R-squared0. S.D. dependent var5325.186S.E. of regression1789.857 Akaike info criterion18.00071Sum squared resid Schwarz criterion18.24614Log likelihood-211.0085 F-statistic46.14801Durbin-Watson stat0. Prob(F-statistic)0.五 序列相关性分析对上一步得到的回归方程做序列相关性
9、分析,采用LM检验法:1. 阶滞后: Breusch-Godfrey Serial Correlation LM Test:F-statistic24.93890 Probability0.Obs*R-squared17.89932 Probability0.Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/15/06 Time: 13:05Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-
10、StatisticProb. C5709.0289294.2960.0.5472X10.0.0.0.8155X2-0.0.-1.0.2322X3-0.0.-1.0.1067X50.0.0.0.3489RESID(-1)1.0.6.0.0000RESID(-2)-0.0.-2.0.0166R-squared0. Mean dependent var1.33E-11Adjusted R-squared0. S.D. dependent var1626.789S.E. of regression954.0127 Akaike info criterion16.79772Sum squared res
11、id Schwarz criterion17.14132Log likelihood-194.5727 F-statistic8.Durbin-Watson stat2. Prob(F-statistic)0.得估计结果为:t(0.61) (0.24) (-1.24) (-1.70) (0.96) (6.45) (-2.66)=0.7458 N=24 P=2 K=5(包含常数项)LM=(N-P)*=(24-2)*0.7458=16.4076=5.99 由于LM,而且,的回归系数显著不为零,表明此模型存在一阶,二阶自相关2. 阶滞后: Breusch-Godfrey Serial Correla
12、tion LM Test:F-statistic17.48614 Probability0.Obs*R-squared18.39076 Probability0.Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/15/06 Time: 13:27Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-StatisticProb. C2300.2259626.9830.0.8142X1-0.0.-0
13、.0.9734X2-0.0.-1.0.2421X3-0.0.-1.0.2466X50.0.1.0.2144RESID(-1)1.0.4.0.0003RESID(-2)-0.0.-0.0.5494RESID(-3)-0.0.-1.0.2537R-squared0. Mean dependent var1.33E-11Adjusted R-squared0. S.D. dependent var1626.789S.E. of regression942.9348 Akaike info criterion16.79707Sum squared resid Schwarz criterion17.1
14、8976Log likelihood-193.5649 F-statistic7.Durbin-Watson stat2. Prob(F-statistic)0.得估计结果为:t (0.24) (-0.03) (-1.21) (-1.20) (1.29) (4.67) (-0.61) (-1.18)=0.7663 N=24 P=3 K=5(包含常数项)LM=(24-3)*0.7663=16.0923=7.81,表明存在自相关;但由于的回归系数不显著,故不存在三阶序列相关性。3. 运用广义差分法进行自相关的处理Dependent Variable: YMethod: Least SquaresD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 我国 粮食生产 相关 投入 计量 经济学 模型 分析 13
限制150内