(教师版)九年级下册《二次函数》的应用培优提高(共29页).doc
《(教师版)九年级下册《二次函数》的应用培优提高(共29页).doc》由会员分享,可在线阅读,更多相关《(教师版)九年级下册《二次函数》的应用培优提高(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上九年级下册二次函数的应用培优提高2013.12.7【基础知识回顾】一、 二次函数与一元二次方程: 二次函数y= ax2+bx+c的同象与x轴的交点的横坐标对应着一元二次方程ax2+bx+c=0的实数根,它们都由根的判别式 决定抛物线x轴有 个交点 b2-4ac0一元二次方程有 实数根抛物线x轴有 个交点 b2-4ac=0一元二次方程有 实数根抛物线x轴有 个交点 b2-4ac0一元二次方程有 实数根【教师提醒:若抛物线与x轴有两交点为A(x1,0)B(x2,0)则抛物线对称轴式x= 两交点间距离AB 】二、二次函数解析式的确定:1、设顶点式,即:设 当知道抛物线的顶点
2、坐标或对称轴方程与函数最值时,除代入这一点外,再知道一个点的坐标即可求函数解析式2、设一般式,即:设 知道一般的三个点坐标或自变量与函数的三组对应数值可设为一般式,从而列三元一次方程组求的函数解析式【教师提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设 以y轴为对称轴,可设 顶点在x轴上,可设 抛物线过原点 等】三、二次函数的应用1、实际问题中解决最值问题:步骤:1、分析数量关系 建立模型 2、设自变量 建立函数关系 3、确定自变量的取值范围 4、根据顶点坐标公式或配法结合自变量的取值范围求出函数最值2、与一次函数或直线形图形结合的综合
3、性问题 一般步骤:1、求一些特殊点的坐标 2、将点的坐标代入函数关系式求出函数的解析式 3、结合图像根据自变量取值讨论点的存在性或图形的形状等问题【教师提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围 2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】 考点一:二次函数的最值例1已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A有最大值,最大值为 B有最大值,最大值为 C有最小值,最小值为 D有最小值,最小值为思
4、路分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可解:M,N两点关于y轴对称,点M的坐标为(a,b),N点的坐标为(-a,b),又点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,整理得,故二次函数y=-abx2+(a+b)x为y=x2+3x,二次项系数为0,故函数有最大值,最大值为y=,故选:B对应训练1(2012兰州)已知二次函数y=a(x+1)2-b(a0)有最小值1,则a,b的大小关系为()Aab Bab Ca=b D不能确定解:二次函数y=a(x+1)2-b(a0)有最小值,抛物线开口方向向上,即a0;又最小值为1,即-b=1,b=-
5、1,ab故选A考点二:确定二次函数关系式例2 (2012珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B(1)求二次函数与一次函数的解析式;ABCOxy(2)根据图象,写出满足kx+b(x-2)2+m的x的取值范围思路分析:(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出kx+b(x-2)2+m的x的取值范围解:(1)将点A
6、(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1当x=0时,y=4-1=3,故C点坐标为(0,3),由于C和B关于对称轴对称,在设B点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0则B点坐标为(4,3)设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b得,解得,则一次函数解析式为y=x-1;(2)A、B坐标为(1,0),(4,3),当kx+b(x-2)2+m时,1x4对应训练2(2012佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)(1)求此
7、抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且SOAB=3,求点B的坐标分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式 求b的值,再将纵坐标b代入抛物线解析式求a的值,确定B点坐标解:(1)把(0,0),(2,0)代入y=x2+bx+c得,解得 ,所以解析式为y=x2-2x。(2)y=x2-2x=(x-1)2-1,顶点为(1,-1),对称轴为:直线x=1 。(3)设点B的坐标为(a,b),则2|b|=3,解得b=3或
8、b=-3,顶点纵坐标为-1,-3-1 (或x2-2x=-3中,x无解)b=3,x2-2x=3,解得x1=3,x2=-1。所以点B的坐标为(3,3)或(-1,3)。考点三:二次函数与x轴的交点问题例3 (2012天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1x2,有下列结论:x1=2,x2=3;m;二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)其中,正确结论的个数是()A0 B1 C2 D3 思路分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集
9、即可对选项进行判断;再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项错误;将选项中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项进行判断解:一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,方程有两个不相等的实数根x1、x2,b2-4ac=(-5)2-4(6-m)=4m+10,解得:m ,故选项正确;一元二次方程实数根分别为x1、x2,x1+x2=5,x1x2=6-m,而选项中x1=2,x2=
10、3,只有在m=0时才能成立,故选项错误;二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),令y=0,可得(x-2)(x-3)=0,解得:x=2或3,抛物线与x轴的交点为(2,0)或(3,0),故选项正确综上所述,正确的结论有2个:故选C对应训练3(2012株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A(-3,0) B(-2,0) Cx=-3 Dx=-2解:抛物线与x轴的另一个交点为B(b,0),抛物线与x轴的一个交点A(1,0),对称轴是
11、x=-1,=-1,解得b=-3,B(-3,0)故选A考点四:二次函数的实际应用例4 (2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x-4)2+3,由此可知铅球推出的距离是 m思路分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可解:令函数式y=-(x-4)2+3中,y=0,0=-(x-4)2+3,解得x1=10,x2=-2(舍去),即铅球推出的距离是10m故答案为:10例5 (2012重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理某企业去年每月的污水
12、量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1x6,且x取整数)之间满足的函数关系如下表:月份x123456输送的污水量y1(吨)12000600040003000240020007至12月,该企业自身处理的污水量y2(吨)与月份x(7x12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a0)其图象如图所示1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=x
13、-x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助若该企业
14、每月的污水处理费用为18000元,请计算出a的整数值(参考数据: 15.2,20.5, 28.4)思路分析:(1)利用表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系求出即可,再利用函数图象得出:图象过(7,10049),(12,10144)点,求出解析式即可;(2)利用当1x6时,以及当7x12时,分别求出处理污水的费用,即可得出答案;(3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a一30)%,得出等式12000(1+a%)1.51+(a-30)%(1-50%)=18000,进而求出即可解:(1)根据表格中
15、数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=112000=12000,故y1=(1x6,且x取整数);根据图象可以得出:图象过(7,10049),(12,10144)点,代入y2=ax2+c(a0)得:,解得:,故y2=x2+10000(7x12,且x取整数);(2)当1x6,且x取整数时:W=y1z1+(12000-y1)z2=+(12000-)(x-x2),=-1000x2+10000x-3000,a=-10000,x=5,1x6,当x=5时,W最大=22000(元),当7x12时,且x取整数时,W=2(12000-y2)+1.
16、5y2=2(12000-x2-10000)+1.5(x2+10000),=-x2+1900,a=-0,x=0,当7x12,W随x增大而减小,当x=7时,W最大=18975.5(元),2200018975.5,去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)1.51+(a-30)%(1-50%)=18000,设t=a%,整理得:10t2+17t-13=0,解得:t=,28.4,t10.57,t2-2.27(舍去),a57,答:a的值是57对应训练4(2012襄阳)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=
17、60x-1.5x2,该型号飞机着陆后滑行 m才能停下来解:-1.50,函数有最大值s最大值=,即飞机着陆后滑行600米才能停止故答案为:6005(2012益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(C
18、D)的比非常接近黄金分割比(约等于0.618)请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:2.236,2.449,结果可保留根号)考点:二次函数的应用分析:(1)利用P与P(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可;(2)根据已知得出C,D两点坐标,进而得出“W”图案的高与宽(CD)的比解:(1)P与P(1,3)关于x轴对称,P点坐标为(1,-3); 抛物线y=a(x-1)2+c过点A(1-,0),顶点是P(1,-3),;解得;则抛物线的解析式为y=(x-1)2-3,即y=x2-2x-2(2)CD平行x轴,P(1,3)在CD上,C、D两点纵坐标为
19、3; 由(x-1)2-3=3,解得:x1=1-,x2=1+,C、D两点的坐标分别为(1-,3),(1+,3)CD=2。“W”图案的高与宽(CD)的比=(或约等于0.6124)考点五:二次函数综合性题目例6 (2012自贡)如图,抛物线交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3)将抛物线沿y轴翻折得抛物线(1)求的解析式;(2)在的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径思路分析:(1)首先求出翻折变换后点A、B所对应点的坐标,然后利用待定系数法求出
20、抛物线的解析式;(2)如图2所示,连接B1C并延长,与对称轴x=1交于点P,则点P即为所求利用轴对称的性质以及三角形三边关系(三角形两边之差小于第三边)可以证明此结论为求点P的坐标,首先需要求出直线B1C的解析式;(3)如图3所示,所求的圆有两个,注意不要遗漏解题要点是利用圆的半径表示点F(或点E)的坐标,然后代入抛物线的解析式,解一元二次方程求出此圆的半径解:(1)如图1所示,设经翻折后,点A、B的对应点分别为A1、B1,依题意,由翻折变换的性质可知A1(3,0),B1(-1,0),C点坐标不变,因此,抛物线经过A1(3,0),B1(-1,0),C(0,-3)三点,设抛物线的解析式为y=ax
21、2+bx+c,则有:9a+3b+c=0 a-b+c=0 c=-3 ,解得a=1,b=-2,c=-3,故抛物线的解析式为:y=x2-2x-3(2)抛物线的对称轴为:x= =1,如图2所示,连接B1C并延长,与对称轴x=1交于点P,则点P即为所求此时,|PA1-PC|=|PB1-PC|=B1C设P为对称轴x=1上不同于点P的任意一点,则有:|PA-PC|=|PB1-PC|B1C(三角形两边之差小于第三边),故|PA-PC|PA1-PC|,即|PA1-PC|最大设直线B1C的解析式为y=kx+b,则有:,解得k=b=-3,故直线B1C的解析式为:y=-3x-3令x=1,得y=-6,故P(1,-6)(
22、3)依题意画出图形,如图3所示,有两种情况当圆位于x轴上方时,设圆心为D,半径为r,由抛物线及圆的对称性可知,点D位于对称轴x=1上,则D(1,r),F(1+r,r)点F(1+r,r)在抛物线y=x2-2x-3上,r=(1+r)2-2(1+r)-3,化简得:r2-r-4=0解得r1=,r2=(舍去),此圆的半径为;当圆位于x轴下方时,同理可求得圆的半径为综上所述,此圆的半径为或对应训练6(2012遵义)如图,已知抛物线y=ax2+bx+c(a0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,)(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使SPOA=2SAOB;(3)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数 教师版 九年级 下册 二次 函数 应用 提高 29
限制150内