2018届高考数学(理)二轮复习-名师讲义:专题一-函数与导数、不等式-第5讲(共8页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018届高考数学(理)二轮复习-名师讲义:专题一-函数与导数、不等式-第5讲(共8页).doc》由会员分享,可在线阅读,更多相关《2018届高考数学(理)二轮复习-名师讲义:专题一-函数与导数、不等式-第5讲(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第5讲导数与函数零点、不等式证明、恒成立问题高考定位在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.真 题 感 悟1.(2014全国卷)已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是()A.(2,) B.(1,)C.(,2) D.(,1)2.(2017全国卷)已知函数f(x)ax2axxln x,且f(x)0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e2f(x0)22.考 点 整 合1.利用导数
2、研究函数的零点函数的零点、方程的实根、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解.2.三次函数的零点分布三次函数在存在两个极值点的情况下,由于当x时,函数值也趋向,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x10两个f(x1)0或者f(x2)0三个f(x1)0且f(x2)0a0(f(x1)为极小值,f(x2)为极大值)一个f(x1)0或f(x2)0两个f(x1)0或者f(x2)0三个f(x1)0且f(x2)03.利用导数解决不等式问题(1)利用导数证明不等式.若证明f(x)g(
3、x),x(a,b),可以构造函数F(x)f(x)g(x),如果能证明F(x)在(a,b)上的最大值小于0,即可证明f(x)g(x)对一切xI恒成立I是f(x)g(x)的解集的子集f(x)g(x)min0(xI).xI,使f(x)g(x)成立I与f(x)g(x)的解集的交集不是空集f(x)g(x)max0(xI).对x1,x2I使得f(x1)g(x2)f(x)maxg(x)min.对x1I,x2I使得f(x1)g(x2)f(x)ming(x)min.温馨提醒解决方程、不等式相关问题,要认真分析题目的结构特点和已知条件,恰当构造函数并借助导数研究性质,这是解题的关键.热点一利用导数研究函数的零点(
4、方程的根)【例1】 (2017淄博诊断)已知aR,函数f(x)exax(e2.718 28是自然对数的底数).(1)若函数f(x)在区间(e,1)上是减函数,求实数a的取值范围;(2)若函数F(x)f(x)(ex2ax2ln xa)在区间内无零点,求实数a的最大值.【训练1】 (2016北京卷节选)设函数f(x)x3ax2bxc.(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)设ab4,若函数f(x)有三个不同零点,求c的取值范围.热点二利用导数求解不等式问题命题角度1证明不等式【例21】 (2015全国卷)设函数f(x)e2xaln x.(1)讨论f(x)的导函数f(x)零点的个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高考 数学 二轮 复习 名师 讲义 专题 函数 导数 不等式
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内