课程设计基本互补对称功率放大器OCL的设计(共29页).doc
《课程设计基本互补对称功率放大器OCL的设计(共29页).doc》由会员分享,可在线阅读,更多相关《课程设计基本互补对称功率放大器OCL的设计(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课程设计任务书题 目:基本互补对称功率放大器OCL的设计初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备低高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。要求完成的主要任务: 1.采用6个以上的晶体管完成一个互补对称功率放大器OCL的设计;2.设计的功率放大器输出功率达到10W以上;3. 利用MULTISIM和PROTEL软件绘制该电路的原理图和PCB印制电路板图;4.完成课程设计报告(应包含电路图,清单、调试及设计总结)。时间安排:12011年6月10日分班集中,布置课程设
2、计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。22011年6月10日 至2011年6月23日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。3. 2011年6月24日提交课程设计报告,进行课程设计验收和答辩。指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日专心-专注-专业目录摘要功率放大器广泛应用于电子线路系统中,在很多情况下设备的额定输出功率比较小,这时就要在信号输出端和信号接收设备之间加上功率放大器来补充所需的功率,在电路中的核心部件是晶体管,其原理是利用的放大作用,通过电流控制作用将直流电源的转换为输出信号的能量。由多级电路,经过不断的电
3、流及电压放大,就完成了功率放大。本课程设计采用基本互补对称型OCL电路,即省去输出端的大电容,优点是可以使系统的低频响应更加平滑。另外本课设采用protel和Multisim软件来画电路原理图和制作PCB板,进行分析和调试。掌握设计和调试电路的一些方法和技巧。关键字:输出频率,晶体管,互补对称AbstractPower amplifiers are widely used in electronic circuit systems. In many cases, the rated output power of equipment is relatively small. Then we a
4、dd the power amplifier between output the signal and the signal receiving device to supplement the power needed . The key components in the circuit is the transistor, the principle is the use of transistor amplification. The energy of the DC power was transformed into the current energy of the outpu
5、t signal by Current control action. By the multi-level circuit, through continuous current and voltage amplification, The power amplification of the circuit is completed. This course is designed with the basic complementary symmetrical circuit OCL, which eliminates the need for large output capacito
6、r. The advantage of it can make the low-frequency system more smooth. Another lesson design using protel and Multisim software to draw schematic and PCB board production,We should Control circuit design and debug some of the methods and techniquesKeywords: output frequency, transistor, complementary
7、 symmetry1功率放大器的特点及OCL各模块工作原理1.1 功率放大器的特点晶体管是功率放大器的核心元件,其原理是利用的电流控制作用或场效应管的控制作用将电源的转换为按照输入信号变化的能量。若将小信号注入晶体管的基极,则集电极流过的电流会等于基极电流的倍,然后将这个信号用隔直隔离出来,就得到了电流是原先的倍的大信号,这现象即三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。在实际应用中放大电路并不是孤立的,在电路的输出端要接入放大对象,即待放大的的信号,同时放大电路必将经过放大或处理的信号送到负载,这就要求输出级除电压放大外,还要提供一定的功率。事实上,各种放大电路的本质都是
8、对能量的转换和控制,无论哪种组态的放大电路,无论有无电压或电路流放大作用,均有功率放大作用。功率放大电路只不过是强调电路的侧重点不一样。区分并不是很严格。但要注意的是功率放大器的负载都是低阻值的负载,在各种电压放大器组态中,共射极放大电路和共基极放大电路的负载能力差,无法驱动低阻值的负载,负载能力最强的电压放大电路是共集极放大电路,所以在各种功率放大器电路中的核心是共集电极放大电路。在实际应用中,功率放大器有以下几个特点要重视:(1)电路的输出功率是交变电流和交变电压的乘积,为得到需要的较大输出功率,驱动低阻值的负载,要求输出的电压幅值足够大,电流幅值足够大,所以电路中的晶体管处于大信号工作状
9、态。(2)功放电路中的晶体管处于大信号工作状态,要承受大的电压、电流,必然有相当大的管耗,当超过晶体管的额定管耗时就易烧毁。电路设计使用中首先要考虑怎样充分地发挥晶体管功能而又不损坏晶体管。由于电路中功放管工作状态常接近极限值,所以在功放电流调整和使用时要小心,不宜超限使用,同时注意电路的散热,另外尽量选择额定管耗大的晶体管。(3)从能量转换的观点来看,功率放大电路提供给负载的交流功率是在输入交流信号的控制下将直流电源提供的能量转换成交流能量而来的。任何电路都只能将直流电能的一部分转换成交流能量输出,其余的部分主要是以热量的形式损耗在电路内部的晶体管和电阻上,并且主要是晶体管的损耗。对于同样功
10、率的直流电能,转换成的交流输出能量越多,功率放大电路的效率就越高。因为功率大,所以效率的问题就变得十分重要,否则,就会带来能源的浪费。(4)功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。功放管的工作点选择不当,输出会有严重失真。同时由于晶体管的非线性,功率放大电路又工作在大信号工作状态,必然导致工作过程中会产生较大的非线性失真。输出功率越大,电压和电流的幅度就越大,信号的非线性失真就越严重。因而如何减小非线性失真是功率放大电路的一个重要问题。1.2功率放大器的分类:1.以晶体管的静态工作点位置分类,即常见的功率放大器按晶体管静态工作
11、点Q在交流负载线上的位置不同,可分为甲类、乙类和甲乙类3种。(1)甲类功率放大器工作在甲类工作状态的晶体管,静态工作点Q选在交流负载线的中点附近。在输入信号的整个周期内,晶体管都处于放大区内,输出的是没有削波失真的完整信号,所示它允许输入信号的动态范围较大,但是甲类功放在没有信号输入时也要消耗电源功率,这部分电源功率全部消耗在导通的晶体管和偏置电阻上,此时电路转换效率为零,当有用信号输入时,电源的功率也只有部分转换为有用信号,只有当信号越大,送给的负载的功率才越高,转换效率才增加。所以其静态电流大、损耗大、效率低。(2)乙类功率放大器工作在乙类工作状态的晶体管,静态工作点Q选在晶体管放大区和截
12、止区的交界处,即交流负载线和0的交点处。在输入信号的整个周期内,晶体管半个周期工作在放大区,半个周期工作在截止区,放大器只有半波输出。当不输入信号或输入信号在晶体管不导通的半个周期内,晶体管没有电流通过,此时晶体管的功率损耗为零,故与甲类功放相比损耗小、效率高,但非线性失真太大。如果采用两个不同类型的晶体管组合起来交替工作,则可以达到最小失真时的信号。(3)甲乙类功率放大器工作在甲乙类工作状态的晶体管,静态工作点Q选在甲类和乙类之间。在输入信号的一个周期内,晶体管有时工作在放大区,有时工作在截止区,其输出为单边失真的信号。甲乙类工作状态的电流较小,效率也比较高,电路只要有信号输入,晶体管就开始
13、工作,因静态偏置电流很小,在输出功率,功耗和转换效率方面与乙类十分接近,但比乙类的低。分析方法与乙类相同。 2.以功率放大器输出端特点分类:(1) 有输出变压器功放电路(2) 无输出变压器功放电路(又称OTL功放电路)(3) 无输出电容器功放电路(又称OCL功放电路)(4) 桥接无输出变压器功放电路(又称BTL功放电路)在本课程设计中,我选择的甲乙类的无输出电容器功放电路OCL。1.3功率放大器的个组成模块及原理功率放大器用来对输入信号进行功率放大,在不同的使用场合下由于对输出信号的功率等要求不同,所以采用不同类型的功放电路。一般情况下,功率放大器是一个多级放大器电路,主要有最前面的前置放大器
14、,中级的推动级和最后的功放输出级电路组成。如图1。图1功率放大器电路组成框图1.3.1 中级驱动的基本放大电路工作原理放大电路的两个作用一是针对变化量即交流量进行放大;二是实现能量转换,把直流电源能量转变成的信号能量。日常中最基本、最常见的晶体管放大电路是共射级放大电路。作为电压放大器,它能够把微弱的信号电压放大。将输入的交流小信号电压叠加在直流电压上,使晶体管基极、发射极之间的正向电压发生变化,通过晶体管的控制作用,使集电极电流有更大的变化,它的变量在集电极电阻上产生大的电压变量,从而实现电压放大。要想实现放大电压作用,有二个要求:第一,要有直流通路,即保证晶体管BJT发射结处于正向偏置,集
15、电结处于反向偏置,使晶体管工作在放大区,以实现电流的控制作用。 第二,要有交流通路,使输入的待放大信号能加到发射结上,以控制三极管的电流,而且放大了的信号能从电路中输出。图2基本共射极放大器放大电路有两种工作状态:直流工作状态和交流工作状态。静态:输入信号为零Vi= 0时,放大电路中各处的电压电流都是不变的直流电的工作状态,称直流工作状态。静态时,晶体管的IB,IC,VCE在特性曲线上确定为一点,称为静态工作点,常称为Q点。在分析静态时,画直流通路的原则是大电容开路,大电感短路,直流电源不变,信号源短路,其直流通路如图3(a),然后利用估算法求解静态工作点。其求解方法:一个放大电路的静态工作点
16、必须由这三个参数共同决定,通常所说的求静态工作点,就是求出三个参数的数值。静态工作点在模拟晶体管放大电路中是很重要的,其设置主要目的就是防止交流信号不失真,静态工作点没有设置好,重者会产生截止和饱和失真,轻者不利与信号的放大。静态工作点最好设置在负载上的中心,这样正弦信号的正半周和负正半幅值可以比较大,也不会失真。要是设置比较偏了,要想不失真的话,只能输入很小幅值的信号。图3共射极放大电路的直流通路和交流通路输入信号不为零时,放大电路的各处电压电流都处于变动的工作状态,称交流工作状态。在进行放大电路动态分析之前,必须先进行静态分析,当静态工作状态正确了,动态分析才有意义。在进行动态分析时,画交
17、流通路的原则是大电容短路,大电感开路,直流电源交流短路,其交流通路如图3(b),然后利用小信号模型分析法,小信号模型如图4,分别求解电压放大倍数Av,输入电阻Ri,输出电阻Ro,其计算方法:电压放大倍数: 输入电阻: 输出电阻: 图 4小信号模型由动态工作分析法可用于电压放大倍数,特别是观察放大电路的最大不失真输出幅度,以及波形是否失真。晶体管输出特性分为三个工作区域:放大区,饱和区,截止区。放大电路的目的是实现信号的不失真放大,即动态工作轨迹在输出特性的放大区。一旦动态工作轨迹进入截止区或饱和区,将造成非线性失真。一般的,当放大电路产生失真的原因有二个:(1)Q点选择不当(过高或过低):(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课程设计 基本 互补 对称 功率放大器 OCL 设计 29
限制150内