工程施工计算书(共12页).docx
《工程施工计算书(共12页).docx》由会员分享,可在线阅读,更多相关《工程施工计算书(共12页).docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上支护形式的选择:在基坑开挖过程中,土壁的稳定主要是依靠土体的内摩擦力和黏聚力来保持平衡的,一旦土体在外力作用下失去平衡,土壁就会坍塌。土壁坍塌,不仅会妨碍土方工程的施工,还会危及附近的建筑物、道路、地下管线等的安全,甚至会导致人员伤亡,造成严重的后果。因此,为了保证基坑工程的顺利进行,我们有必要选择合理的支护形式。目前经常采用的主要基坑支护类型有:(1) 水泥土深层搅拌桩支护,其优点是采用重力式挡墙,不需要支撑,基坑内开挖土施工方便,搅拌桩施工时无环境污染(无噪声、无振动、无排污),造价低廉及防渗性好,但这种支护结构往往要求基坑周围有一定间距布置搅拌桩,且只适用于深度
2、不大的基坑;(2) 排桩支护结构,可以是稀疏排桩支护,适用于土质较好的地区;也可采用连续排桩支护加搅拌桩防渗,适用于软土地区。这种排桩支护结构适用于较深的基坑,其造价也比较低;(3) 地下连续墙,这种支护结构施工时对周边环境影响小,对土层使用性强,墙体抗弯刚度、防渗性能和整体性均较好,但其造价比较高。根据该工程开挖深度、地基土层条件和周边环境,我们选择了比较经济而又满足开挖条件的排桩支护形式-多层土层锚杆支撑的钻孔灌注桩挡墙结构。钻孔灌注桩具有施工方便、速度快、打桩后可立即开挖、工期短、刚度大、变形小的特点,而且与地下连续墙相比,经济效果显著。土层锚杆是一种受拉杆件,它的一端与工程结构物或挡土
3、墙联接,另一端锚固于地基的土层或岩层中,以承受结构物的上托力、拉拔力、倾侧力或挡土墙的土压力,它利用地层的锚固力维持结构物的稳定。用锚杆代替内支撑,为土方施工提供巨大的工作面,而且采用预应力可以控制结构的变形,施工时的噪声和振动均很小。支护结构的设计:支护结构的设计就是根据基坑开挖条件和各种水文地质条件在满足工程安全可靠、经济、便于施工的基础上进行支护结构承载力和变形的计算。支护结构设计的内容包括支护结构上荷载的计算,灌注桩内力的计算和截面、配筋的计算,锚杆的设计计算,围檩的设计计算,和基坑稳定性的验算。一) 作用于支护结构上荷载的计算1) 作用在支护结构上的荷载可分为三类: 永久荷载:主要为
4、土压力,不考虑降水导致水对支护的影响,将水压力与土压力均作为恒载,采用水土合算计算压力。 可变荷载:主要为地面上汽车、吊车及堆载,取q=20kN/m 。 偶然荷载:主要包括地震力、爆炸力等等,暂不列入本次计算内容。2) 荷载计算理论支护结构上荷载的计算主要是土压力的计算,然而实际作用于支护上的土压力一般都比较复杂,并没有精确的理论来保证其正确可靠,而是通过现场测试和室内模型试验并依此为基础,但限于条件,我们采用经典的朗肯土压力理论来近似计算挡土压力,并辅以一定的安全系数,这样计算得到的结果都是偏于安全的。 对于地下水对土压力的影响,根据土层信息,我们采用水土合算法。合算原则认为土孔隙中不存在自
5、由的重力水,而仅存在结合水,结合水不能传递静水压力,以土粒与孔隙水共同组成的土体为对象,适用于于黏性大、渗透系数比较小的土层。而本工程土样渗透系数为0.08m/d,孔隙比n=0.75,符合水土合算要求。3) 水土压力计算因为基坑的开挖使得开挖部分土体失去了平衡,坑外土体有向坑内运动的趋势,于是墙后土层就会施加于围护结构一个主动土压力,迫使挡墙向基坑内变形,对坑地下层土体产生挤压效果,与此同时,基坑内底层土体就会施加于围护结构一个被动土压力。沿支护墙长度方向取1m延米进行计算杂填土主动土压力系数:Ka1=tan2(45o-/2)= tan2(45o-15o/2)=0.59粉质粘土主动土压力系数:
6、Ka2=tan2(45o-/2)= tan2(45o-20o/2)=0.49杂填土上层土压力:ea0=(q+1h) Ka1-2c1Ka1 = 0.49kPa杂填土下层土压力:ea1-=14.74kPa粉质粘土上层土压力:ea1+=-9.38kPa基坑底面处土层压力:ea2=(q+1h+2h) Ka1-2c2Ka2 = 0.49kPa土层信息图朗肯理论假定墙背与填土之间无摩擦力,即摩擦力=0,计算出主动土压力偏大,被动土压力偏小,因此,在计算被动土压力系数时,使0,则被动土压力系数可按照下式计算:Kp=coscos-sin(+)sin2式中 Kp主动土压力系数; 土的内摩擦角; 桩土间的摩擦角(
7、=1323)。取=122=10o,则该黏性土层的被动土压力系数Kp=2.64鉴于安全考虑,一般不对主动土压力予以折减,故上述主动土压力仍以朗肯理论计算所得。对于多支点排桩支护的计算方法,一般有等值梁法(连续梁法)、支撑荷载的1/2分担法、逐层开挖支撑力不变法和有限元法。而我们采用连续梁法进行以下计算: 土压力为的点(近似零弯点)距离基坑底面的距离的计算土压力分布图y = ea(Kp-Ka)=107(2.64-0.49)19=2.62m 计算连续梁(灌注桩)的内力采用连续梁的计算方法得到各点的弯矩和剪力值如下:各点ABCDEM(kNm)0-5.13-59.45-236.40V(kN)010.81
8、50.7478.1167.5 计算灌注桩入土深度根据等值梁法得:入土深度X=y+6RF(KP-Ka)=2.62+6167.519(2.64-0.49)=2.62+ 4.96=7.58m考虑土质较差,应乘以一定的安全系数,取K=1.1,即灌注桩的入土深度为1.17.58=8.34m则灌注桩总长度为H=13.5+8.34=21.84m,取H=22m。4) 灌注桩挡墙设计 桩体材料根据规范要求“钻孔灌注桩采用水下浇筑混凝土,混凝土强度等级不宜低于C20(通常用C30)”,故我们选用C30的混凝土,水泥采用425号普通硅酸盐水泥,粗骨料粒径控制在40mm以内,钢筋采用HRB335(fy=300N/mm
9、2)。 桩身参数初定钻孔灌注桩常用桩径为5001000mm,我们初定为800mm,桩与桩之间的中心距为1000mm,桩与桩之间的净距则为200mm,便于施工,钢筋保护层厚度为50mm。 桩体配筋计算我们采用圆形截面均匀配筋,其正截面受弯承载力可按下式计算:MC=23fcr3sin3+fyASrssin+sint式中 MC单桩抗弯承载力,Nmm; AS-纵向钢筋截面面积,mm2; r-桩的直径,mm;rs-纵向钢筋所在的圆周半径,mm,为桩的半径减去钢筋保护层厚度,mm; t-纵向受拉钢筋截面面积与全部纵向钢筋截面积的比值; -对应于受压区混凝土截面积的圆心角与2的比值; fc-混凝土强度设计值
10、,MPa; fy-钢筋强度设计值MPa。我们初取AS=2500mm2(满足最小配筋率=0.42%的条件下),计算系数K=fyAS/(fcA)=0.10,查表得=0.216,t=0.818,代入公式算的MC=248.6kNm,略大于单桩承受的最大弯矩值。故AS=2500mm2满足要求,但考虑到受弯构件强度设计安全系数K=1.4则AS=1.42500=3500mm2,选用1022(AS=3801mm2) 构造配筋钻孔灌注桩的箍筋采用8200 螺旋箍,每隔2000mm布置一根直径为16mm的焊接加强箍筋,以增强钢筋笼的整体刚度,有利于钢筋笼吊放和浇筑水下混凝土的整体性。5) 土层锚杆设计计算 确定基
11、坑支护方案,根据基坑开挖深度和土的参数,确定锚杆的层数、倾角等根据开挖深度和桩身受力分析,我们采用三层土层锚杆支护,每先挖到锚杆标高,就进行锚杆施工,待锚杆张拉好后,方可进行下一步开挖。参照土层锚杆设计和施工规范,我们选取土层锚杆水平间距为2m,锚杆倾角为30o,然后进行设计。 根据锚杆的间距、倾角,计算锚杆轴力第i层锚杆 12 3锚杆轴力(kN) 24.9 348.0 1103.9 计算锚杆自由段长度锚杆自由段长度Lf可按下式计算:Lf=LAB=LAOsin(45o-2)sin(45o+2+)式中 LAO锚杆锚头中点至基坑底面以下土压力为零点处的距离; 土体各土层厚度加权内摩擦值标准值; 锚
12、杆倾角。第一层锚杆:Lf1=9.04m,考虑到自由段变形长度应超过滑裂面0.51.0m的长度,故取Lf1=10m,以下同理。第二层锚杆:Lf1=7.0m第三层锚杆:Lf1=5.0m,虽然经计算仅为4.25,但规范建议不应短于5m,故取为5.0m 计算锚杆锚固段长度锚杆的锚固段长度La按下式计算:La=KmNtdm 式中 dm-锚杆段直径,可取钻孔直径的1.2倍; Km锚固安全系数,可取1,当使用年限超过两年或周边环境要求较高时,可取2.0 Nt-锚杆设计拉力; -锚固体与土层之间的剪切强度,可按各地积累的经验取用,或者按式=c+tan确定,c为土体内力,为锚固段中点的土覆压力,为锚 固段与土体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程施工 计算 12
限制150内