数字图像处理读书报告(共6页).doc
《数字图像处理读书报告(共6页).doc》由会员分享,可在线阅读,更多相关《数字图像处理读书报告(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上Efficient object detection and segmentation for fine-grained recognition细粒度识别的有效目标检测与分割李其信 信号与信息处理1摘要本文提出了一种针对细粒度的识别的目的检测和分割算法。该算法首先检测可能属于对象的低级别的区域,然后通过传播进行完整的对象分割。除了分割对象,我们也可以以中心“放大”对象,依据尺度比例规范对象,因此折扣背景的影响。这种算法与一个国家的最先进分类算法的结合能明显提高性能,特别是对于认为很难识别数据集,如鸟类物种,性能提高更加明显。该算法的效率远远超过同样方案下的其它已知算法
2、4,21。我们的方法也比较简单,我们将其应用到不同的对象的类,如鸟类,花卉,猫和狗。我们在一些基准细粒度的分类数据集上测试了该算法的性能。它优于所有已知的最先进的方法对这些数据集的性能,有时高达11%。在所有的数据集上应用此算法,基线算法的性能提高了3-4%。我们在识别性能上具有挑战性的大规模花的数据集(包含578个品种的花图像)上进行试验,观察到还观察到上出现超过4%的改善。2背景本文讨论的对象分类问题属于相同的基本范畴,如物种鸟,花等。这个任务通常被称为细粒识别,需要特定领域的专家知识,而这些知识通常很少的人才有。因此,开发自动识别系统这样的任务对于非专家存在很大好处。毫无疑问,细粒度的分
3、类面临的主要挑战是物种之间细微的差异。然而,一个自动系统会遇到更多的挑战。例如,图像通常包括丰富的自然环境和具有挑战性的背景,其中的背景的影响可能会变得突出,从而干扰算法的识别。但是,有时背景可能是有用的,所以分割出背景将是有益的。分割也有助于提取感兴趣对象的轮廓,可以提供良好的特征识别。一种检测和分割算法的另一个好处就是,它可以定位对象,这个对象是有益的,特别是如果该对象不在图像的中心,或者大小的中央,不同于其它对象的大小。在本文中,我们提出了一个有效的目标检测分割算法,可以有效地用于对象定位和大小规范(图1)。我们的方法是试图识别它之前,先分割可能感兴趣的对象,这种方法比以前的快很多,适用
4、各种不同的超类别,如鸟类,鲜花,和猫狗,并改善了识别细粒度的分类任务中的性能。我们的方法是在检测的时候基于感兴趣类的识别。在这里,为对象的超类,如鸟类,这个想法是建立基于特征的初步检测。这些检测器是对象的指示器,可以帮助指出对象可能的位置。我们进一步应用基于拉普拉斯操作数的传播方法,这种方法可以在低级别的线索中分割完整的对象。这里的关键是,这个传输过程是由最初检测到区域来引导,但在同一时间能够保存对象的边界,从而有效地分割完整对象。此外,所得到的分割是用来定位对象,折扣的背景的影响。我们的实验显示,这对于最终的识别是相当有益的。3过程论文第3节介绍如何在一个图像中检测和分割对象。第一步,3.1
5、节中完成一系列基本的基于区域的部分对象检测。然后,在3.2节中提出,使用这些区域作为初始化条件,利用拉普拉斯传播方法。最后,第4节中,将分割后的图像(它包含检测到的和分段对象,可能被裁剪或者大小已被调整)和输入图像,通过该功能特征提取和分类管道(第4节),最终得到分类的结果。3.1对象的特定区域检测我们的方法是首先初始搜索可能属于超类的对象区域。为简单,我们使用超像素分割方法把图像分割成相干的小块区域。每个超级像素区域利用文献3中提到的一组特征描述符描述。利用上述特点,在脱机条件下训练一个分类模型去决定一个区域是属于超类(如所有花)还是属于背景。该模型的一个优点就是其通用性,可以再不同类别的数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 处理 读书 报告
限制150内