常微分方程在数学建模中的应用(共18页).doc
《常微分方程在数学建模中的应用(共18页).doc》由会员分享,可在线阅读,更多相关《常微分方程在数学建模中的应用(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上微分方程应用 1 引言常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具.数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和
2、内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用.2 数学模型简介通常我们把现实问题的一个模拟称为模型如交通图、地质图、航空模型和建筑模型等利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等学会建立数学模型对解决实际生活问题会有很大的帮助建立数学模型
3、是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节3 常微分方程模型31 常微分方程的简介微分方程的发展有着渊远的历史微分方程和微积分产生于同一时代,如苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时就对简单的微分方程用级数来求解.后来,瑞士数学家雅各布贝努、欧拉、法国数学
4、家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程理论.纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系.如牛顿研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.而这些都证明微分方程在改造自然和认识自然方面有着巨大的力量.微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,
5、也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质常微分方程是解决实际问题的重要工具.32 常微分方程模型示例数学模型按照建立模型的数学方法可以分为初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型和规划论模型等当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测他的未来性态时,通常要建立对象的动态模型,即微分方程模型建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来下面我们由浅入
6、深地介绍一些微分方程模型例1 细菌的增长率与总数成正比如果培养的细菌总数在24h内由100增长为400,那么,前12h后总数是多少?解: 第一句话说的是在任何瞬间都成立的事实;第二句话给出的是特定瞬间的信息如果我们用表示总数,第一句话告诉我们它的通解为 和这两个常数可以由问题中第二句话提供的信息计算出来,即 (3.1)和 (3.2)其中的单位为小时(3.1)意味着 (3.2)意味着 它给出 故 要我们求的是个细菌例2 将室内一支读数为的温度计放到室外min后,温度计的读数为;又过了10min,读数为.先不用计算,推测一下室外的温度.然后利用牛顿的冷却定律计算出正确的答案牛顿的冷却定律或称加热定
7、律是:将温度为的物体放进处于常温的介质中时,的变化速率正比于与周围介质的温度差在这个数学模型中,假定介质足够大,从而,当放入一个较热或较冷的物体时,基本上不受影响实验证明,这是一个相当好的近似解 显然,对于这个题首先要做的是了解牛顿定律的含义,这已经做过了。所以,用了两段话来作为我们求解的出发点第三段关键词“以某一速度变化”这句话是说与是成正比例的,即给出的三个特定条件是:其中的单位是分钟,而的单位是度。微分方程的解为解出三个常数解出例3红绿灯问题在十字路口的交通管理中,亮红灯之前,要亮一段时间的黄灯,这是为了让那些正行驶在十字路口的人注意,告诉他们红灯即将亮起,假如你能够停住,应当马上刹车,
8、以免冲红灯违反交通规则.这里我们不妨想一下:黄灯应当亮多久才比较合适? 现在,让我们来分析一下这个问题在十字路口行驶的车辆中,交警主要考虑的是机动车辆,因为只要机动车辆能停住,那么非机动车辆自然也应当能停住。驶近交叉路口的驾驶员在看到黄色信号灯后要立即做出决定:是停车还是通过路口如果他决定停车,必须有足够的距离能让他能停得住车也就是说,在街道上存在着一条无形的线,从这条线到街口的距离与此街道的法定速度有关,法定速度越大,此距离也越大当黄灯亮起时车子到路口的距离小于此距离时不能停车,否则会冲出路口大于此距离时必须停车,等于此距离时可以停车也可以通过路口(注:此街道的法定速度由另一问题讨论,制定法
9、定速度的目的是为了最大限度地发挥这一街道的作用)对于那些已经过线而无法停住的车辆,黄灯又必须留下足够的时间使它们能顺利地通过路口根据上述分析,我们确定了求解这一问题的步骤如下:步1. 根据该街道的法定速度求出停车线位置(即停车线到街口的距离)步2. 根据停车线位置及法定速度确定黄灯该亮多久(停车线的确定)要确定停车线位置应当考虑到两点:(1)驾驶员看到黄灯并决定停车需要一段反应时间,在这段时间里,驾驶员尚未刹车(2)驾驶员刹车后,车还需要继续行驶一段距离,我们把这段距离称为刹车距离 驾驶员的反应时间(实际为平均反应时间)较易得到,可以根据经验或者统计数据求出,交通部门对驾驶员也有一个统一的要求
10、(在考驾照时都必须经过测试)例如,不失一般性,我们可以假设它为1秒,(反应时间的长短并不影响到计算方法) 停车时,驾驶员踩动刹车踏板产生一种摩擦力,该摩擦力使汽车减速并最终停下设汽车质量为,刹车摩擦系数为,为刹车后在t时刻内行驶的距离,更久刹车规律,可假设刹车制动力为(为重力加速度)由牛顿第二定律,刹车过程中车辆应满足下列运动方程 (3.3)在方程(3.3)两边同除以并积分一次,并注意到当时,得到 (3.4)刹车时间可这样求得,当时,故将(3.4)再积分一次,得 将代入,即可求得停车距离为据此可知,停车线到路口的距离应为: 等式右边的第一项为反应时间里驶过的路程,第二项为刹车距离(黄灯时间的计
11、算) 现在我们可以来确定黄灯究竟应当亮多久了在黄灯转为红灯的这段时间里,应当能保证已经过线的车辆顺利地通过街口记街道的宽度为(很容易测得),平均车身长度为,这些车辆应通过的路程最长可达到,因而,为保证过线的车辆全部顺利通过,黄灯持续时间至少应当为: 33 建立常微分方程模型的方法和步骤从上边的例子大致可以看出微分方程模型的特点是反映客观现实世界中量与量的变化关系,往往与时间有关是一个动态(力)系统构造常微分方程的数学模型有如下几种方法:1 运用已知的基本定律或基本公式建立常微分方程模型主要利用各学科中已知的定理或定律来建立的.如力学中的牛顿第二运动定律,万有引力定律,傅里叶传热导定律,弹性形变
12、中的虎克定律,拆里定律,阿基米德原理,放射性问题中的衰变率,生物学、经济学、人口问题中的增长率等2利用导数的定义建立微分方程模型在微积分中导数是一个重要概念,其定义为如果函数是可微的,那么就可解释为相对于在该点的瞬时变化率。把导数解释为瞬时变化率在很多建模应用问题中都有用如在生物学以及人口问题研究中出现的“速率”、“增长”;在放射问题中出现的“衰变”,在经济学中出现的“边际的”等,这些词的出现就是一个信号,这个时候要注意哪些研究对象在变化,这些变化规律也许可以用在微分方程的表示中例如在考古学中,经常需要测定某种文物的绝对年龄,这时我们可以考察其中的放射性物质,由裂变规律:放射性物质的裂变速度与
13、其存余量成正比我们假设时刻时该放射性物质的存余量为,是的函数,则我们可以建立常微分方程模型其中是衰变系数,与放射性物质本身有关.求解该模型,我们解得:,其中是待定系数,它可以由初始条件确定.这样我们就可以测定这种文物的绝对年龄.3利用微元法建立常微分方程模型这种方法主要是通过寻求微元之间的关系式,直接对函数运用有关定律建立模型一般的,如果某一实际问题中所求的变量符合下列条件: 是与一个自变量的变化区间有关的量;对于区间具有可加性;部分量那么就可以考虑利用微元法来建立常微分方程模型,其步骤是:根据问题的具体情况,选取一个自变量,并确定其变化区间为;在区间中任意选取一个任意小的区间记作,求出相应于
14、这个区间的部分量的近似值将近似的表示为一个连续函数在处的值与的乘积,即,记,称为量的微元等式两边同时积分就可以求出要求的量了这种方法经常被应用于各种领域例如在空间解析几何上可以用微元法求曲线的弧长、平面图形的面积、旋转曲面的面积、旋转体体积;代数方面求近似值以及流体混合问题;物理上求变力做功、压力、静力矩与重心4.模拟近似对于规律或现象不很清楚,比较复杂的实际问题,常用模拟近似法来建立常微分方程模型这类模型一般要做一些合理假设,将要研究的问题突出出来这个过程往往是近似的,因此用此法建立常微分方程模型后,要分析其解的有关性质,在此基础上同实际情况对比,看所建立的模型是否符合实际,必要时要对假设或
15、模型进行修改3.4建立微分方程模型的一般准则在建立微分方程的时候,所要求的其实是微分方程的一条解曲线,通过它来反映某些我们所要寻求的规律微分方程曲线思想是,如果知道曲线上每一点处的导数以及它的起始点,那么就能构造这条曲线(1)转化翻译:有许多表示导数的常用词,如速率、增长、衰变、边际、弹性等改变、变化、增加、减少这些词可能是一种暗示信号,只需弄清楚什么在变,随什么而变,这时也许导数就用得上(2)机理分析:将所研究的问题看成一个封闭和系统,思考研究的问题是否遵循什么原理或物理定律,是应该用已知的定律还是去推导问题的合适结果在不知道问题的机理时,合理的想象和类比是很重要的 不少问题都遵循下面的平衡
16、式:净变化率输入率-输出率如果当这个平衡式出现的时候我们能理解它,并且能使用正确的物理量纲,或许就得到了需要的微分方程(3)微分方程模型:微分方程是在任何时刻必须正确的瞬时表达式如看到了表示导数的关键词,就要寻找与, 的关系首先将注意力集中在文字形式的总关系式上,如“速率=输入-输出”写出这些关系式,然后准确填好式中的所有项(4)单位:一旦确定了哪些项应该列入微分方程中,就要确保每一项都采用同样的物理单位,保证式子的平衡(5)定解条件:系统在某一特定时刻的信息,独立于微分方程而成立,利用它们来确定有关的常数,包括比例系数、原微分方程的其它参数以及解中的积分系数4微分方程建模4.1数学建模的简介
17、数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象;也包涵抽象的现象,如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测、试验和解释实际现象等内容.我们还可以直观地理解这个概念:数学建模是一个让纯粹数学家变成物理学家、生物学家,经济学家甚至是心理学家等的过程.要描述一个实际现象可以有很多种方式,比如录音、录像、比喻、传言等等.而数学语言以其科学性、逻辑性、客观性及可重复性的特点,在描述各种现象时体现出其别具一格地严密与贴合实际.正是由于这样,更多人越来越喜欢运用数学这种严格而又严密的语言,而使用数学语言描述的事物就称
18、为数学模型.有时候我们需要做一些实验,但这些实验往往用抽象出来的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代.举个简单例子:某司机欲把某货物从甲地运往乙地,应如何选择运输路线使总路程最短?该司机不会开着车去试探,而是利用交通图来确定自己的行车路线从这个简单的例子中我们可以看到数学模型的重要性应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程,也就是说使抽象的事物变的感性化.而建立模型首先要通过调查、收集数据资料,其次是观察和研究实际对象的固有特征和内在规
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 数学 建模 中的 应用 18
限制150内