2014年高考文科数学真题答案全国卷(共17页).docx
《2014年高考文科数学真题答案全国卷(共17页).docx》由会员分享,可在线阅读,更多相关《2014年高考文科数学真题答案全国卷(共17页).docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2014年高考文科数学真题及答案全国卷1一、选择题(题型注释)1已知集合,则( )A. B. C. D. 【答案】B【解析】试题分析:根据集合的运算法则可得:,即选B考点:集合的运算2若,则A. B. C. D. 【答案】C【解析】试题分析:由,可得:同正或同负,即可排除A和B,又由,故.考点:同角三角函数的关系3设,则A. B. C. D. 2【答案】B【解析】试题分析:根据复数运算法则可得:,由模的运算可得:.考点:复数的运算4已知双曲线的离心率为2,则A. 2 B. C. D. 1【答案】D【解析】试题分析:由离心率可得:,解得:考点:复数的运算5设函数的定义域
2、为,且是奇函数,是偶函数,则下列结论中正确的是A.是偶函数 B. 是奇函数 C. 是奇函数 D. 是奇函数【答案】C【解析】试题分析:由函数的定义域为,且是奇函数,是偶函数,可得:和均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C考点:函数的奇偶性6设分别为的三边的中点,则A. B. C. D. 【答案】A【解析】试题分析:根据平面向量基本定理和向量的加减运算可得:在中,同理,则考点:向量的运算7在函数, ,,中,最小正周期为的所有函数为A. B. C. D. 【答案】A【解析】试题分析:中函数是一个偶函数,其周期与相同,;中函数的周期是函数周期的一半,即; ; ,
3、则选A考点:三角函数的图象和性质8如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱【答案】B【解析】试题分析:根据三视图的法则:长对正,高平齐,宽相等可得几何体如下图所示考点:三视图的考查9执行右面的程序框图,若输入的分别为1,2,3,则输出的( )A. B. C. D.【答案】D【解析】试题分析:根据题意由成立,则循环,即;又由成立,则循环,即;又由成立,则循环,即;又由不成立,则出循环,输出考点:算法的循环结构10已知抛物线C:的焦点为,是C上一点,则( )A. 1 B. 2 C. 4 D. 8【答案】A【
4、解析】试题分析:根据抛物线的定义:到焦点的距离等于到准线的距离,又抛物线的准线方程为:,则有:,即有,可解得考点:抛物线的方程和定义11已知函数,若存在唯一的零点,且,则的取值范围是(A) (B) (C) (D)【答案】C【解析】试题分析:根据题中函数特征,当时,函数显然有两个零点且一正一负; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递增; 时函数单调递减,显然存在负零点; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递减; 时函数单调递增,欲要使得函数有唯一的零点且为正,则满足:,即得:,可解得:,则考点:1.函数的零点;2.导数在函数性质
5、中的运用;3.分类讨论的运用12设,满足约束条件且的最小值为7,则(A)-5 (B)3 (C)-5或3 (D)5或-3【答案】B【解析】试题分析:根据题中约束条件可画出可行域如下图所示,两直线交点坐标为:,又由题中可知,当时,z有最小值:,则,解得:;当时,z无最小值故选B考点:线性规划的应用13将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_.【答案】【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:考
6、点:古典概率的计算14甲、乙、丙三位同学被问到是否去过、三个城市时, 甲说:我去过的城市比乙多,但没去过城市; 乙说:我没去过城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为_.【答案】A【解析】试题分析:根据题意可将三人可能去过哪些城市的情况列表如下:A城市B城市C城市甲去过没去去过乙去过没去没去丙去过可能可能可以得出结论乙去过的城市为:A考点:命题的逻辑分析15设函数则使得成立的的取值范围是_.【答案】【解析】试题分析:由于题中所给是一个分段函数,则当时,由,可解得:,则此时:;当时,由,可解得:,则此时:,综合上述两种情况可得:考点:1.分段函数;2.解不等式16如图,为测
7、量山高,选择和另一座山的山顶为测量观测点.从点测得 点的仰角,点的仰角以及;从点测得.已知山高,则山高_.【答案】150【解析】试题分析:根据题意,在中,已知,易得:;在中,已知,易得:,由正弦定理可解得:,即:;在中,已知,易得:.考点:1.空间几何体;2.仰角的理解;3.解三角形的运用八、解答题17已知是递增的等差数列,是方程的根。(I)求的通项公式;(II)求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)根据题中所给一元二次方程,可运用因式分解的方法求出它的两根为2,3,即可得出等差数列中的,运用等差数列的定义求出公差为d,则,故,从而.即可求出通项公式;(2)由第(1)
8、小题中已求出通项,易求出:,写出它的前n项的形式:,观察此式特征,发现它是一个差比数列,故可采用错位相减的方法进行数列求和,即两边同乘,即:,将两式相减可得:,所以.试题解析:(1)方程的两根为2,3,由题意得.设数列的公差为d,则,故,从而.所以的通项公式为.(2)设的前n项和为,由(1)知,则,.两式相减得所以.考点:1.一元二次方程的解法;2.等差数列的基本量计算;3.数列的求和18从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组75,85)85,95)95,105)105,115)115,125)频数62638228(I)在答
9、题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)(2)质量指标值的样本平均数为100,质量指标值的样本方差为104(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】试题分析:(1)根据频率分布表与频率分布直方图的关系,先根据:频率=频数总数计算出各组的频率,再根据:高度=频率组距计算出各组的高度,即可以组距为横坐标高度为纵坐标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 年高 文科 数学 答案 全国卷 17
限制150内