七年级数学二元一次方程组(教师讲义带答案)(共25页).doc
《七年级数学二元一次方程组(教师讲义带答案)(共25页).doc》由会员分享,可在线阅读,更多相关《七年级数学二元一次方程组(教师讲义带答案)(共25页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 二元一次方程组 【知识要点】1二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式)二元一次方程必须含有两个未知数;二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。2二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。3二元一次方程组:由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; 整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量;方程组中每个方程经过
2、整理后都是一次方程,4二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。5会检验一对数值是不是一个二元一次方程组的解6二元一次方程组的解法:(1) 代入消元法 (2)加减消元法三、理解解二元一次方程组的思想四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形代入求解回代写解(二)、加减法一般步骤:变形加减求解代入写解1.1 二元一次方程组的解法(1)用代入法解二元一次方程组例:解方程组 解题方法:编号:将方程组进行编号;变形:从方程组中选定一个系数比较简单的方程进行变形,用含有x(或y)的代数式表示y(或x),即变成y=ax+b(或x=ay+b
3、)的形式;代入:将y=ax+b(或x=ay+b)代入另一个方程(不能代入原变形方程)中,消去y(或x),得到一个关于x(或y)的一元一次方程;求x(或y):解这个一元一次方程,求出x(或y)的值;求y(或x):把x(或y)的值代入y=ax+b(或x=ay+b)中,求出y(或x)的值;联立:用“”联立两个未知数的值,就是方程组的解。(2)用加减消元法解二元一次方程组例:解方程组解题方法:编号:将方程组进行编号;系数相等:根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;相加(或相减):根据“等式两边加上(或减去)同一个整式
4、,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;求值:解这个一元一次方程,求出一个未知数的值;求另值:把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;联立:用“”联立两个未知数的值,就是方程组的解。分析 我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一个未知数的代数式表示方程(2)中x的系数是1,因此,可以先将方程(2)变形为用含y的代数式表示x,再代入方程(1)求解这种方法叫“代入消元法”解:由(2),得 x=8-3
5、y (3)把(3)代入(1),得: 2(8-3y)+5y=-21,16-6y+5y=-21,-y=-37,所以y=37点评 如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来变形分析 此方程组里没有一个未知数的系数是1,但方程(1)中x的系数是2,比较简单,可选择它来变形解: 由(1),得 2x=8+7y, (3)把(3)代入(2),得分析 本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单经过观察发现,若将两个方程相加,得出一个x,y的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解这样,就使问题变得比较简单了解:(1)+(2),得10
6、0x+100y=200,所以x+y=2 (3)解这个方程组由(3),得 x=2-y (4)把(4)代入(1),得53(2-y)+47y=112,106-53y+47y=112,-6y=6,所以y=-1分析 经观察发现,(1)和(2)中x的系数都是6,若将两方程相减,便可消去x,只剩关于y的方程,问题便很容易解决、这种方法叫“加减消元法”解:(1)-(2),得12y=-36,所以y=-3把y=-3代入(2),得:6x-5(-3)=17,6x=2,所以:点评 若方程组中两个方程同一未知数的系数相等,则用减法消元;若同一未知数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系,或完全不相等
7、,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数,然后再用加减法消元在进行加减特别是进行减法运算时,一定要正确处理好符号分析 方程组中,相同未知数的系数没有一样的,也没有互为相反数的但不难将未知数y的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加便消去了y解:(1)3,得9x+12y=48 (3)(2)2,得10x-12y=66 (4)(3)+(4),得19x=114,所以x=6把x=6代入(1),得36+4y=16,4y=-2,点评 将x的系数都转化为15(3和5的最小公倍数),比较起来,变y的系数要简便些一是因为变y的系数乘的数较小,二是因为变y的系数后是做加法,而变
8、x的系数后要做减法例6 已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值分析 根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以解这个方程组整理,得(4)-(3),得2m=8,所以m=4把m=4代入(3),得2n=6,所以n=3所分析 因为x+y=2,所以x=2-y,把它代入方程组,便得出含y,m的新方程组,从而求出m也可用减法将方程组中的m消去,从而得出含x,y的一个二元一次方程,根据x+y=2这一条件,求出x和y,再去求m解:将方程组中的两个方程相减,得x+2y=2,即(x+y)+y=2因为x
9、+y=2,所以2+y=2,所以y=0,于是得x=2把x=2,y=0代入2x+3y=m,得m=4把m=4代入m2-2m+1,得m2-2m+1=42-24+1=9例8 已知x+2y=2x+y+1=7x-y,求2x-y的值分析 已知条件是三个都含有x,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出x和y,从而使问题得到解决解:已知条件可转化为整理这个方程组,得解这个方程组由(3),得x=y-1 (5)把(5)代入(4),得5(y-1)-2y-1=0,5y-2y=5+1,所以y=2把y=2代入(3),得x-2+1=0,所以x=12x-y=0例9
10、 解方程组 分析 先从方程组中选出一个方程,如方程(1),用含有一个未知数的代数式表示另一个未知数,把它代入另一个方程中,得到一个一元一次方程,解这个方程求出一个未知数的值,再代入求另一个未知数的值解 由(1),得, (3)把(3)代入(2)中,得,解得 把代入(3)中,得, 是原方程组的解例10解方程组 分析 方程组的两个方程中,同一个未知数的系数既不相等,也不互为相反数时,可以用适当的数去乘方程的两边,使某一个未知数的系数相等,或互为相反数,再把所得的两个方程相加减就可以消去一个未知数解 (1)3,得 (3)(2)2,得 (4)(3)+(4),得, .把代入(1)中,得, 是原方程组的解例
11、11 若方程组的解x、y,满足,求正数m的取值范围解 由 可解得 又 , , 满足条件的m的范围是.例12解方程组 分析:由于方程(1)和(2)中同一字母(未知数)表示同一个数,因此将(1)中的值代入(2)中就可消去,从而转化为关于的一元一次方程解:将(1)代入(2),得 ,解得,把代入(1)得 , 方程组的解为 例13解方程组 解:由(1)得 (3)把(3)代入(2),得 ,解得 把代入(3),得 ,解得 方程组的解为 说明: 将作为一个整体代入消元,这种方法称为整体代入法,本题把看作一个整体代入消元比把(1)变形为再代入(2)简单得多1.2 二元一次方程组的应用学习目标: 1能够借助二元一
12、次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用2进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3体会列方程组比列一元一次方程容易4进一步培养化实际问题为数学问题的能力和分析问题,解决问题的能力5掌握列方程组解应用题的一般步骤;重点: 1经历和体验用二元一次方程组解决实际问题的过程。2进一步体会方程(组)是刻画现实世界的有效数学模型。难点:正确找出问题中的两个等量关系知识要点梳理知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数
13、就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差开始时两者相距的路程;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和总路程。(3)航行问题:船在静水中的速度水速船的顺水速度; 船在静水中的速度水速船的逆水速度;
14、 顺水速度逆水速度2水速。注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。2工程问题:工作效率工作时间=工作量.3商品销售利润问题:(1)利润售价成本(进价);(2);(3)利润成本(进价)利润率;(4)标价成本(进价)(1利润率);(5)实际售价标价打折率;注意:“商品利润售价成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十)4储蓄问题:(1)基本概念 本金:顾客存入银行的钱叫做本金。 利息:银行付给顾客的酬金叫做利息。 本息和:本金与利息的和叫做本息和。
15、 期数:存入银行的时间叫做期数。 利率:每个期数内的利息与本金的比叫做利率。 利息税:利息的税款叫做利息税。 (2)基本关系式 利息本金利率期数 本息和本金利息本金本金利率期数本金 (1利率期数) 利息税利息利息税率本金利率期数利息税率。 税后利息利息 (1利息税率) 年利率月利率12 。注意:免税利息=利息 5配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。6增长率问题:解这类问题的基本等量关系式是:原量(1增长率)增长后的量;原量(1减少率)减少后的量.7和差倍分问题:解这类问题的基本等量关系是:较大量较小量多余量,总量倍数倍量.8数字问题:解决这类问题
16、,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9浓度问题:溶液质量浓度=溶质质量.10几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12优化方案问题:在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓
17、住重点,比较几种方案得出最佳方案。知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1审题:弄清题意及题目中的数量关系;2设未知数:可直接设元,也可间接设元;3找出题目中的等量关系;4列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5解所列的方程组,并检验解的正确性;6写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 解答步骤
18、简记为:问题方程组解答(4)列方程组解应用题应注意的问题 弄清各种题型中基本量之间的关系; 审题时,注意从文字,图表中获得有关信息; 注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;正确书写速度单位,避免与路程单位混淆; 在寻找等量关系时,应注意挖掘隐含的条件; 列方程组解应用题一定要注意检验。 经典例题透析类型一:列二元一次方程组解决行程问题1甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.
19、这时,汽车、拖拉机各自行驶了多少千米? 思路点拨:画直线型示意图理解题意: (1)这里有两个未知数:汽车的行程;拖拉机的行程. (2)有两个等量关系: 相向而行:汽车行驶小时的路程拖拉机行驶小时的路程160千米; 同向而行:汽车行驶小时的路程拖拉机行驶小时的路程.解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组 解这个方程组,得:.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。举一反三:【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出
20、发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙两人每小时分别行走千米、千米。根据题意可得:解得:答:甲每小时走6千米,乙每小时走3.6千米。【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。分析:船顺流速度静水中的速度水速船逆流速度静水中的速度水速 解:设船在静水中的速度为x千米/时,水速为y千米/时,则 ,解得:答:船在静水中的速度为17千米/时,水速3千米/时。类型二:列二元一次方程组解决工程问题2一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需
21、付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少? 思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 二元 一次 方程组 教师 讲义 答案 25
限制150内