VM双闭环不可逆直流调速系统设计(共26页).doc





《VM双闭环不可逆直流调速系统设计(共26页).doc》由会员分享,可在线阅读,更多相关《VM双闭环不可逆直流调速系统设计(共26页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上目录摘要直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。 转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。转速、电流双闭环直流调速系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,在理论分析的基础上,本文设计了一套实验用双闭环直流调速系统,详
2、细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。关键词 直流电机 直流调速系统 速度调节器 电流调节器 双闭环系统 1理论设计用工程设计方案设计转速、电流反馈控制直流调速系统的原则是先内环后外环。步骤是:先从电流环开始,对其进行不要的变换个近似处理,然后根据电流环的控制要求确定把它校正成典型系统,在按照控制对象确定电流调节器的类型,最后按动态性能指标要求确定电流调节器的参数。电流环设计完成后,把电流环等效成转速环中的一个环节,再用同样的办法设计转速环。双闭环调速系统的实
3、际动态结构中包含有滤波环节,包括电流滤波、转速滤波和两个给定信号的滤波环节。设置滤波环节的必要性是由于反馈信号检测中常含有谐波和其他扰动量,为了抑制各种扰动量对系统的影响,需要增加低通滤波,这样的滤波环节传递函数可以用一阶惯性环节来表示,其滤波时间常数按需要选定。然而,在抑制扰动量的同时,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个同等时间常数的惯性环节,称作给定滤波环节。其意义是,让给定信号和反馈信号经过相同的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便。2主电路结构设计变压器调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有
4、3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。旋转变流机组简称G-M系统,适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。静止可控整流器又称V-M系统,通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变Ud,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。直流斩波器和脉宽调制交换器采用PWM受器件限制,适用于中、小功率的系统。根据本设计的技术要求和特点选V-M系统。在V-M系统中,调节器给定电压,即可移动触发装置GT输出脉冲的相位,从而方便的改变整流器的输出瞬时电压Ud。由于要求直流电压脉动较小,故采用三相全控桥式整流
5、电路。考虑使电路简单、经济且满足性能要求,选择晶闸管三相全控桥整流器供电方案。因三相桥式全控整流电压的脉动频率比三相半波高,因而所需的平波电抗器的电感量可相应减少约一半,这是三相整流电路的一大优点。并且晶闸管可控整流装置无噪声、无磨损、响应快、体积小、重量轻、投资省。而且工作可靠,能耗小,效率高。同时,由于电机的容量较大,又要求电流的脉动小。综上所述,选晶闸管三相全控桥整流电路供电方案。三相桥式全控整流电路的原理如图2-1所示,习惯将其中阴极连接在一起到3个晶闸管(VT1、VT3、VT5)称为共阴极;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极,另外通常习惯晶闸管从1至6的顺
6、序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源相接的3个晶体管分别是VT1、VT3、VT5,共阳极组中与a,b,c三相电源相接的3个晶闸管分别是VT4、VT6、VT2。其工作特点如下:1)每个时刻均需两个晶闸管同时导通,形成向负载供电的回路,其中一个晶闸管是共阴极组的,一个是共阳极组的,且不能为同一相的晶闸管。2)对触发脉冲的要求:六个晶闸管的脉冲按VT1VT2VT3VT4VT5VT6的顺序相为,相位依次相差;共阴极组VT1、VT3、VT5的脉冲依次差,共阳极组VT4、VT6、VT2也依次差;同一相的上下两个桥臂即VT1与VT4,VT3与VT6,VT5与VT2脉冲相差。
7、 图2-1 三相桥式全控整流电路原理图3)整流输出电压一周期脉动6次,每次脉动的波形都一样,故该电路为六脉波整流电路。4)在整流电路合闸启动过程中或电流断续时,为确保电路的正常工作,需保证同时导通的两个晶闸管均有触发脉冲。为此,可采用两种方法:一种是使脉冲宽度大于(一般取),称为宽脉冲触发;另一种方法是,在触发某个晶闸管的同时,给前一个晶闸管补发脉冲,即用两个窄脉冲代替宽脉冲,两个窄脉冲的前沿相差,脉宽一般为,称为双脉冲触发。双脉冲电路较复杂,但要求的触发电路输出功率小。宽脉冲触发电路虽可少输出一半脉冲,但为了不使脉冲变压器饱和,需将铁芯体积做得较大,绕组匝数较多,导致漏感增大,脉冲前沿不够陡
8、,对于晶闸管串联使用不利。虽可用去磁绕组改善这种情况,但又触发电路复杂化。因此,常用的是双脉冲触发。3双闭环不可逆直流调速系统设计为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接,如图5-1所示,把转速调节器(ASR)的输出当作电流调节器(ACR)的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速换在外边,称作外环。这就形成了转速、电流双闭环调速系统。图3-1 双闭环直流调速系统动态结构框图双闭环直流调速系统动态结构框图如图5-1所示,速度调
9、节器根据转速给定电压和速度反馈电压的偏差进行调节,其输出是电流的给定电压(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。电流调节器根据电流给定电压和电流反馈电压的偏差进行调节,其输出是功率变换器件(三相整流装置)的控制信号。通过电压进而调节整流装置的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由可知,只要与不相等那么转速n会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡后,转速达到稳定。 在双闭环调速系统在稳态工作中,当转速和电流两个调节器都不饱和时,各变量之间有下列关系: (2-1) (2-2)
10、(2-3)在稳态工作点上,转速n是由给定电压Un*决定的,ASR的输出量Ui*是有负载电流IdL决定的,而控制电压Uc的大小则同时取决于n和Id。这些关系反映了PI调节器不同于P调节器的特点。P调节器的输出量总是正比于其输入量,而PI调节器则不然,其输出量在动态过程中决定于输入量的积分,达到稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。后面需要PI调节器提供多么大的输出值,它就能提供多少,直到饱和为止。双闭环调速系统的稳态参数计算和无静差系统的稳态计算相似,根据各调节器的给定与反馈值计算有关的反馈系数转速反馈系数 (2-4)电流反馈系数 (2-5) 本设计中电流调节器
11、输出正限幅值为8V,负限幅值为0V;转速调节器输出正限幅值为8V,负限幅值为0V。根据已知参数可求得转速反馈系数为: 电流反馈系数为: 另外由 (2-6)根据电机参数得 0.128Vmin/r在双闭环直流调速系统中,转速调节器和电流调节器的结构选择与参数设计须从动态校正的需要来解决。本设计采用工程设计方法:先确定调节器的结构,以确保系统稳定,同时满足所需的稳定精度。再选择调节器的参数,以满足动态性能指标的要求。按照“先内环后外环” 的一般系统设计原则,从内环开始,逐步向外扩展。在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。比例调节器的作用是按比例
12、反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节器的作用是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数 ,越小,积分作用就越强。反之大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。PI调节器综合了比例控制器和积分控制器两种规律的优点,又克服了各自的缺点,扬长避短,互相补充。比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。要实现系统无静差,满足系统的技术指
13、标要求,转速调节器和电流调节器都要采用PI调节器。双闭环直流调速系统电路原理如图3-2所示:图3-2闭环直流调速系统电路原理图3.1变压器参数计算变压器副边电压采用如下公式进行计算: 因此变压器的变比近似为:一次侧和二次侧电流I1和I2的计算I1=1.052870.861/3.45=75AI2=0.861287=247A变压器容量的计算S1=m1U1I1=338075=85.5kVAS2=m2U2I2=3110247=81.5kVAS=0.5(S1+S2)=0.5(85.5+81.5)=83.5kVA因此整流变压器的参数为:变比K=3.45,容量S=83.5kVA3.2电流连续的临界电感量L1
14、的计算平波电抗器的临界电感量L1(单位mH)可由下式计算 (3-5)式中K1为与整流电路形式有关的系数,可由表查得K1=0.693,由技术要求知Idmin=10%Id,所以Ud=2.34U2cos Ud=UN=220V, 取=0 3.3输出电流脉动的临界电感量L2的计算由于晶闸管整流装置的输出电压是脉动的,因此输出电流波形也是脉动的。该脉动电流可以看成一个恒定直流分量和一个交流分量组成。通常伏在需要的只是直流分量,对电动机负载来说,过大的交流分量会使电动机换向恶化和铁耗增加,引起过热。因此,应在直流侧传入平波电抗器,用来限制输出电流的脉动量。平波电抗器的临界电感量L2(单位mH)可由下式计算
15、(3-6)式中K2为与整流电路形式有关的系数,Si为电流最大允许脉动系数,通常三相电路。根据本电路形式查表可得K2=1.045,所以=3.42mH3.4电动机电感量LD的计算电动机电感量LD(单位mH)可按下式计算 (3-7)式中Ud 、Ld、n直流电动机额定电压、额定电流和额定转速;P电动机磁极对数;计算系数,对一般无补偿电机取=812。所以=1.28mH (取P=2,=10)3.5实际串入平波电抗器的电感量L的计算由于变压器的漏电感很小,可以忽略不计,那么串入平波电抗器的电感量L=max(L1,L2)-LD= 2.14mH 取其电感值为2mH根据电感量大小取其电阻为0.23.6可控晶闸管参
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- VM 闭环 可逆 直流 调速 系统 设计 26

限制150内