中考数学圆动点问题(共3页).doc
《中考数学圆动点问题(共3页).doc》由会员分享,可在线阅读,更多相关《中考数学圆动点问题(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考数学圆的动点问题 动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。 例1. 在中,AC5,BC12,ACB90,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。(03年广州市中考) 分析:不论P、Q如何运动,PCQ都小于ACB即小于90,又因为PQ与AC不平行,所以PQC不等于90,所以只有CP
2、Q为直角,CPQ才可能是直角三角形,而要判断CPQ是否为直角三角形,只需构造以CQ为直径的圆,根据直径所对的圆周角为直角,若AB边上的动点P在圆上,CPQ就为直角,否则CPQ就不可能为直角。 以CQ为直径做半圆D。 当半圆D与AB相切时,设切点为M,连结DM,则 DMAB,且ACAM5 所以 设,则 在中,即 解得:,所以 即当且点P运动到切点M的位置时,CPQ为直角三角形。 当时,半圆D与直线AB有两个交点,当点P运动到这两个交点的位置时,CPQ为直角三角形。 当时,半圆D与直线AB相离,即点P在半圆D之外,0CPQ90,此时,CPQ不可能为直角三角形。 所以,当时,CPQ可能为直角三角形。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 圆动点 问题
限制150内