七年级数学集体备课教学设计(共4页).doc
《七年级数学集体备课教学设计(共4页).doc》由会员分享,可在线阅读,更多相关《七年级数学集体备课教学设计(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上七年级数学集体备课教学设计第一章有理数一本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。重点:有理数加、减、乘、除、乘方运算难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。二本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中
2、占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。三本章涉及到的主要数学思想及方法:1分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。2数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。3化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。4类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加
3、、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。在学习过程中要时时考虑符号问题。用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。四教法建议(仅供参考)1在学完数轴一节课后,把利用数轴比较有理数的大小补充进来,提前讲解,在讲完绝对值后,在利用绝对值比较两个负数的大小,这样做既可以体会到数轴的用途,也可以避免两种方法放在一起给学生造成的混乱,而利用绝对值比较有理数的大小,写法上学生一般情况下掌握不好,这样可以着重训练学生的写法,分散难点。2注重联系实际:这本教材的编排更注重了知识来源于生活,反过来又应用到生活中去的思想
4、。充分体现了生活中处处有数学,人人都学有用的数学的理念。因此,在每课的“创设情境”这一环节中,要充分注意这一点,充分利用生活实例引入新知识,使学生充分体现到学好数学是有用的,因而提高学生学习数学的兴趣。3对于绝对值一课的教法建议:对于绝对值的代数意义的理解,学生往往感到困难,教者可以告诉学生:两棍中间夹着一个人(整体),当它是正数和零时,两棍一扒拉,直接走出来,当它是负数时,两棍一扒拉,拄着拐棍走出来,比较形象,使学生容易理解,在整式的加减一章中,才可以顺利去掉绝对值符号,进行化简。4注重本章的选学内容:一个是第6页的“用正负数表示加工允许误差”,另一个是第40页的“翻牌游戏中的数学定到理”5
5、在近似数一节课中注意在第46页的例6中补充两个题型:1)86400(保留2个有效数字)2)(精确到十万位)。同时增加例7:下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?1)4.20 2) 0.0022 3)4.5万 4)3.05 五常见题型的处理建议: 1.赋值法:在学生遇到一些含有字母的式子中,往往很难判断结果,这时采用此方法,比较简单易行。但要注意赋值的范围。例如:对任意有理数a,下列各式中一定成立的是:A.aa的绝对值,B.aa的绝对值 C aa的绝对值 的相反数 D aa的绝对值2.数轴法:例如:有理数a,b,a0,b0, 且a的绝对值b的绝对值,试比较a,b,a,b的
6、大小。借助数轴,学生很容易得到答案。3.非负数性质的应用:这一章中我们已经接触了两种非负数:a的绝对值和a的平方.它们在计算中经常遇到,特别注意:若A,B为非负数,且A+B=0,则A=0,B=0。有三种可能:A,B都以绝对值的形式给出,A,B都以平方的形式给出,A,B中一个以绝对值的形式给出,另一个以平方的形式给出。第二章整式的加减一本章的主要内容:列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。重点:去括号,合并同类项。难点:对单项式系数,次数,多项式次数的理解与应用。 二本章的地位及作用:整式是简单代数式的一种形式,在日常生活中经常要用整
7、式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。三本章涉及到的主要数学思想及方法:1.整体数思想:主要体现在式子的化简求值问题中,有些题目采用整体代人的解题策略,可使计算简便。有些题目只有从整体考虑才能解决问题。例如:已知:a-b=-3,c+d=2,求(b+c)-(a-d)的值2.从“特殊到一般”,又从“一般到特殊”的数学思想:这主要体现在本章的习题中,都是根据实际问题列出式子,然后再根据具体数值求式子的值中。3.对比思想:本章出现了单项式,多项式,同类项等概念,为了正确掌握这
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 集体 备课 教学 设计
限制150内