《抽屉原理简介(共8页).doc》由会员分享,可在线阅读,更多相关《抽屉原理简介(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一、抽屉原理简介抽屉原理又称鸽巢原理,“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”原理1:把m个物体任意分放进n个空抽屉里(mn,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。原理2:把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。原理3:无穷多个元素分成n个集合,则至少有一个集合中含有无穷多个元素。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的
2、物体(或人)找出来。现行的小学课本中只编排了抽屉原理1、2的教学。二、 运用抽屉原理解题的步骤第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“要分的物体”,什么可作“抽屉”。第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。第三步:运用原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。三、理解抽屉原理要注意几点(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。(2)“
3、任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。(4)将a件物品放入n个抽屉中,如果an= mb,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。四、教学建议1 应让学生初步经历“数学证明”的过程。在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓
4、励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。2 应有意识地培养学生的“模型”思想。“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。3 要适当把握教学要求。“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题
5、与“抽屉问题”之间的联系并不容易。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。 教材解读一、教 学 目 标1. 经历“抽屉原理”的探究过程,初步了 解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2. 通过“抽屉原理”的灵活应用感受数学的魅力。二、教 学 内 容例1比较简单的抽屉原理把m个物体任意分放进n个空抽屉里(mn,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。例2比较简单的抽屉原理把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)
6、个物体。例3抽屉原理的具体应用“抽屉原理”的具体应用三、教材说明和建议:例1、把4枝铅笔放在3个文具盒里,不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么呢?为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下
7、1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n 1)枝铅笔放进 n个文具盒,总有一个文具盒里至少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。三、教材说明和建议:例1、把4枝铅笔放在3个文具盒里,不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么呢?为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,
8、0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n 1)枝铅笔放进 n个文具盒,总有一个文具盒里至少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。教学建议: 由于例题中的数据较小,为学生自主探索提供了很大的空间。因此,教学时,可以放手让学生自主思考,先采用实践操作的方法进行“证明”
9、,然后再进行交流。只要是合理的,都应给予鼓励。在此过程中,教师也应给予适当的指导。 教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题。学生在解决了“4枝铅笔放进3个文具盒”的问题以后,可以让学生继续思考:把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放进5个文具盒,结果是否一样呢?把7枝铅笔放进6个文具盒呢?把10枝铅笔放进9个文具盒呢?把100枝铅笔放进99个文具盒呢?
10、引导学生得出一般性的结论:只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。接着,可以继续提问:如果要放的铅笔数比文具盒的数量多2,多3,多4呢?引导学生发现:只要铅笔数比文具盒的数量多,这个结论都是成立的。通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。 例一的教学:引导学生自主探索,得出一般性结论。1、体验方法多样(1)枚举法:(4、0、0),(3、1、0),(2、2、0),(2、1、1),(2)假设法:假设每个文具盒只放1枝铅笔,最多放3只。剩下的1枝还要放进1个文具盒。所以至少有2枝铅笔放进同一个文具盒。(算式)假设法最核心的思路就是把书尽量多地
11、“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。2、体验方法优劣枚举法受到数量多少的局限假设法能够方便地解决一般性的问题为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”。学生可以利用例题中的方法迁移类推,加以解释。做一做:6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?解答:假设每个鸽舍只飞进1只鸽子,最飞进5只鸽子。剩下的1只鸽子还要飞进同一个鸽舍里。所以至少有2只鸽子要飞进同一个鸽舍里。(算式)、抽
12、屉 、答语 例2 教材说明 例2、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放进3本书。7本呢?9本呢? 教材提供了让学生把5本书放进2个抽屉的情境,在操作的过程中,学生发现不管怎么放,总有一个抽屉至少放进3本书,从而产生探究原因的愿望。学生仍然可以采用枚举的方法,把5分解成两个数,有(5,0),(4,1),(3,2)三种情况。在任何一种结果中,总有一个数不小于3。更具一般性的仍然是假设的方法,即先把5本书“平均分成2份”。利用有余数除法52=21可以发现,如果每个抽屉放进2本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。 研究了“把5本书放进2个抽屉”的问题后,
13、教材又进一步提出“如果一共有7本书,9本书,情况会怎样?”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书,9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论。 在此基础上,让学生观察这几个“抽屉问题”的特点,寻找规律,使学生对这一类“抽屉原理”达到一般性的理解。教学建议: 教学例2时,仍应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。例如,在解决“5本书放2个抽屉”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行
14、适当的引导。例如,可以提问学生“113本书放进2个抽屉呢?”由于数据很大,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法。假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。 做一做:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?解答:假设每个鸽舍只飞进2只鸽子,最飞进6只鸽子。剩下的2只鸽子还要飞进鸽舍里。所以至少有3只鸽子要飞进同一个鸽舍里。学生完成“做一做”时,可以仿照
15、例2,利用83=22,可知总有一个鸽舍里至少有3只鸽子。 需要注意的是,例2中“某个抽屉至少有的书的本数”是除法算式中的商加“1”,而例2中除法算式的余数也正好是1,很容易让学生错误地理解成是商加“余数”,并迁移到“做一做”,想成至少有“2(商)2(余数)”,把结论变成“至少有4只鸽子要飞进同一个鸽舍里”。事实上,只要学生从本质上理解“抽屉原理”的推理过程,就能克服这种错误理解。例2的教学:引导学生利用有余数除法原理的角度探索,得出一般性结论。1、关注学习过程:操作、观察、比较、合情推理、归纳。2、注重方法多样:枚举法:(5,0),(4,1),(3,2)三种情况,可知在任何一种结果中,总有一个
16、数不小于3,故总有一个抽屉里至少有3本书;假设法:先把每个抽屉各放1本,还剩下3本,再把每个抽屉各放1本,还剩1本,这样不管怎么放,总有一个抽屉至少放进3本书;也可能有学生说把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。3、借助算式思考。(注意用“商+1”就可以了,不是“商+余数”)4、学会归纳总结。5、沟通例1例2联系与区别。例3 教材说明例3、盒子里同样大小的红球和篮球各4个,要想摸出的球一定有同色的,最少要摸几个球?本例是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。要解决这个问题,可以联想到前两
17、个例题中的“抽屉问题”。因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,就可以把“摸球问题”转化成“抽屉问题”。假设最少要摸出a 个球, a2=1b ,当b =1时, a就是最小的,此时 a=3。即至少要摸出3个球,才能保证有两个球是同色的。 教材通过三个学生的对话,指出了学生可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时有可能会遇到的一些困难。例如,本例中的“4个红球和4个蓝球”很容易给学生造成干扰。 教学建议:教学例3时,要先引导学生思考本例的问题与前面所讲的抽屉原理是否有联系,有什么样的联系,应该把什么看成抽屉,要
18、分放的东西是什么。但学生在思考这些问题的时候,一开始可能会缺乏思考的方向,很难找到切入点。此时,可以让学生先自由猜测,再验证。例如,有的学生会猜测“只摸2个球能否保证这2个球同色”,只要举出一个反例就可以推翻这种猜测,如这两个球正好是一红一蓝时就不能满足条件。再如,由于受到题目中“4个红球和4个蓝球”这个条件的干扰,许多学生会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”。为了验证这个猜测,学生会自觉地把“摸球问题”与“抽屉问题”联系起来,把两种颜色看成两个抽屉。根据52=21,可以知道,摸出5个球时至少有3个球同色。因此,摸出5个球是没有
19、必要的。在学生猜测、验证的基础上,逐步引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。例如,在本例中,根据例1中的结论“只要分的物体个数比抽屉数多,就能保证一定有一个抽屉至少有2个球”就能推断“要保证有一个抽屉至少有2个球,分的物体个数至少比抽屉数多1”。现在,“抽屉数”就是“颜色数”,结论就变成了:“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。”因此,要从两种颜色的球中保证摸出两个同色的,最少要摸出3个球。 在教学的过程中,在实际问题和“抽屉问题”之间架起一座桥梁并不是一件非常容易的事。如果学生在理解时
20、存在比较大的困难时,也可以引导他们这样思考:球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球、一个红球一个蓝球、两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。 例3的教学关键是找到抽屉。 引导学生利用有余数除法原理得出答案。 进而总结一般性结论:只要摸出的球比颜色多11、寻找与抽屉原理的本质联系怎样把这一问题与抽屉原理挂钩?即是要把多少个物体放进多少个抽屉里?要摸出多少个球就是物体的个数,即要所求。两种颜色就是两个抽屉。结果是摸出的球数比颜色数多1,即3个球。2、注重抽屉原理的变式训练做一做:1、向东小学六年级共有370名学生,其中六(2)班有49
21、名学生。六年级里一定有两人的生日是同一天。六(2)班中至少有5人是一个月出生的。他们说得对吗?为什么?解答:完成第72页的“做一做”第1题时,要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,4912=41,因此,总有一个抽屉里至少有5(即41)个人,也就是他们的生日在同一个月。(1)把370个物体放进366个抽屉370366=14(2) 把49个物体放进12个
22、抽屉4912=41“做一做”第1题也是“抽屉原理”的典型例子。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。2、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取道两个颜色相同的球?解答:要摸出多少个球就是物体的个数,即要所求。4种颜色就是4个抽屉。结果是摸出的球数比颜色数多1,即5个球。关于练习十二中一些习题的说明和教学建议。1、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张氏同花色的。试一试,并说明理由。解答:第1题,可以让学生先用扑克牌操作一下,看看实验
23、结果是否和题目所描述的一致,再对其中的原因加以思考。我们可以用抽屉原理来解释这一现象:一副扑克牌共54张,去掉2张王牌,只剩下方块、红桃、梅花、黑桃四种花色。我们把4种花色当作4个抽屉,把5张扑克牌放进4个抽屉中,必有一个抽屉至少有2张扑克牌,即至少有2张是同花色的。2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有1镖不低于9环。为什么?解答:相当于把41环分到5个抽屉(代表5镖)中,根据41581,必有一个抽屉至少有9(即81)环。3、把红、黄、蓝三种颜色的小棒各10根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有两根向同色的小棒?保证有2对同色的小棒呢?解答:第3题中的第一个问题与例3的类型相同,只要想一共有3种颜色,至少拿出4根小棒就能保证一定有2根同色的小棒。4、给一个正方体的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?解答:把两种颜色当作两个抽屉,把正方体6个面当作物体,要把6个面分配给两个抽屉,62=3,至少有3个面要涂上相同的颜色。专心-专注-专业
限制150内