矩阵可逆性的判定及逆矩阵的求法(共8页).docx
《矩阵可逆性的判定及逆矩阵的求法(共8页).docx》由会员分享,可在线阅读,更多相关《矩阵可逆性的判定及逆矩阵的求法(共8页).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上键入公司名称线性代数论文矩阵可逆性的判定及逆矩阵的求法关键字:可逆矩阵的定义、|A|0、阶方阵、AB=E、r(A)=n、|A|=12i0、齐次方程组、初等变换化为单位矩阵、分块矩阵求逆、分解矩阵求逆、递推法机械学院交通运输班韩振坤谭鹏鹏魏亚萌联系方式矩阵可逆性的判定及逆矩阵的求法矩阵是数学中一个极其重要的应用广泛的概念,它是代数,特别是现性代数的一个主要研究对象。其中逆矩阵又是矩阵理论中一个非常重要的概念,逆矩阵的可逆性及其求法自然也就成为要研究的主要内容之一。本文主要是对课本中关于可逆矩阵判定方法的总结,在阶数较高的矩阵可逆判定、用分块矩阵求逆矩阵、分解矩阵求逆法上
2、略有拓展,另外参考相关资料列出递推法求逆。1、可逆矩阵的定义定义:设是阶矩阵,如果存在阶矩阵,使得n,则称是可逆矩阵(或称为非奇异矩阵),是的逆矩阵。从这个定义可知,单位矩阵E的可逆矩阵就是其自身。2、矩阵可逆性的判定2.1 n阶方阵可逆的充分必要条件是|A|0,且此时.此定理判断矩阵可逆很容易,只是求逆矩阵非常的麻烦,适用于求低阶矩(二阶、三阶)的逆矩阵的情况。2.2 利用矩阵的初等行变换,若矩阵可化为单位矩阵,则可逆,并可直接求出逆矩阵。此种方法最常用。 矩阵可以化为单位矩阵,所以矩阵可逆。2.3A为n阶方阵,若存在n阶矩阵B满足AB=E(或BA=E),则矩阵是可逆的,且=、.若要判断是否
3、可逆,则只要看是否能找到与其乘积等于的矩阵即可。例2.1 矩阵和满足-=,证明可逆,并求其逆矩阵。证明:由=可得-=,即()(),于是()()=.所以可逆,且逆矩阵为2.4 若n阶矩阵的秩为n,即r(A)=n,则矩阵可逆。 利用矩阵秩的定义或利用初等行变换将矩阵化为行阶梯型矩阵求其秩,看是否等于矩阵的阶数。例2.2 判断矩阵是否可逆? =.解:所以R(A)=3,矩阵可逆。2.5 方阵A为可逆矩阵的充要条件是A可以写成初等矩阵的乘积。即A=P1P2Ps,其中Pi是初等矩阵。2.6 可逆 A的行(列)向量组线性无关。2.7 可逆 齐次方程组AX=0只有零解。 若齐次方程组AX=0只有零解,则r(A
4、)=n,A可逆。2.8 可逆 非齐次线性方程组AX=B总有唯一解。2.9 n阶矩阵可逆的充分必要条件是它的特征值都不等于0. 即 |A|=12i0,A可逆。 此方法将判断矩阵是否可逆转化为求方程的解。例2.3判断矩阵是否可逆?=.解:解得特征值为=-1,=2,=5.因此矩阵可逆。2.10 一类阶数较高矩阵可逆性的判定对于二阶矩阵(1)当时,则可逆,且其逆为,利用这一简单结论可简单的判定形如(2) 一类方阵是否可逆,其中(2)中未标的元素主对角线上全为1,其它元全为0. 定理2.10矩阵(2)可逆当且仅当矩阵(1)可逆。证:记矩阵(2)为,由于 则有:矩阵(2)可逆矩阵可逆。3、逆矩阵的求法3.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 可逆性 判定 求法
限制150内