用MATLAB实现最速下降法牛顿法和共轭梯度法求解实例(共5页).doc
《用MATLAB实现最速下降法牛顿法和共轭梯度法求解实例(共5页).doc》由会员分享,可在线阅读,更多相关《用MATLAB实现最速下降法牛顿法和共轭梯度法求解实例(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 实验的题目和要求 一、 所属课程名称: 最优化方法二、 实验日期: 2010年5月10日2010年5月15日三、 实验目的掌握最速下降法,牛顿法和共轭梯度法的算法思想,并能上机编程实现相应的算法。二、实验要求用MATLAB实现最速下降法,牛顿法和共轭梯度法求解实例。四、实验原理最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。牛顿法是利用目标函数在迭代点处的Taylor展开式作为模型函数,并利用这个二次模型函数的极小点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向仅仅是负梯度方向与上一次接待的搜索
2、方向的组合。五运行及结果如下: 最速下降法:题目:f=(x-2)2+(y-4)2M文件:function R,n=steel(x0,y0,eps)syms x;syms y;f=(x-2)2+(y-4)2;v=x,y;j=jacobian(f,v);T=subs(j(1),x,x0),subs(j(2),y,y0);temp=sqrt(T(1)2+(T(2)2);x1=x0;y1=y0;n=0;syms kk;while (tempeps) d=-T; f1=x1+kk*d(1);f2=y1+kk*d(2); fT=subs(j(1),x,f1),subs(j(2),y,f2); fun=sq
3、rt(fT(1)2+(fT(2)2); Mini=Gold(fun,0,1,0.00001); x0=x1+Mini*d(1);y0=y1+Mini*d(2); T=subs(j(1),x,x0),subs(j(2),y,y0); temp=sqrt(T(1)2+(T(2)2); x1=x0;y1=y0; n=n+1;endR=x0,y0调用黄金分割法:M文件:function Mini=Gold(f,a0,b0,eps)syms x;format long;syms kk;u=a0+0.382*(b0-a0);v=a0+0.618*(b0-a0);k=0;a=a0;b=b0;array(k+
4、1,1)=a;array(k+1,2)=b;while(b-a)/(b0-a0)=eps) Fu=subs(f,kk,u); Fv=subs(f,kk,v); if(FuFv) a=u; u=v; v=a+0.618*(b-a); k=k+1; end array(k+1,1)=a;array(k+1,2)=b;endMini=(a+b)/2;输入:R,n=steel(0,1,0.0001)R = 1.642 3.463R = 1.642 3.463n = 1牛顿法:题目:f=(x-2)2+(y-4)2M文件:syms x1 x2; f=(x1-2)2+(x2-4)2; v=x1,x2; df
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MATLAB 实现 下降 牛顿 共轭 梯度 求解 实例
限制150内