2015北京数学模拟试题分类汇编----圆锥曲线(共9页).doc
《2015北京数学模拟试题分类汇编----圆锥曲线(共9页).doc》由会员分享,可在线阅读,更多相关《2015北京数学模拟试题分类汇编----圆锥曲线(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(2015昌平二模)oCMyxBNDA19.(本小题满分14分)已知椭圆的离心率为,其短轴的两端点分别为.()求椭圆的方程;()若是椭圆上关于轴对称的两个不同点,直线与轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.(2015朝阳保温二)19(本小题满分14 分)已知椭圆C:的一个焦点为F(2,0),离心率为 。过焦点F 的直线l 与椭圆C交于 A,B两点,线段 AB中点为D,O为坐标原点,过O,D的直线交椭圆于M,N 两点。(1)求椭圆C 的方程;(2)求四边形AMBN 面积的最大值。(2015朝阳保温一)(19)(本小题共
2、13分)在平面直角坐标系中中,动点到定点的距离与它到直线的距离相等()求动点的轨迹的方程;()设动直线与曲线相切于点,与直线相交于点 证明:以为直径的圆恒过轴上某定点(2015朝阳二模)19.(本小题共14分)动点到定点的距离与它到定直线的距离之比为.() 求动点的轨迹的方程;() 已知定点,动点在直线上,作直线与轨迹的另一个交点为,作直线与轨迹的另一个交点为,证明:三点共线.(2015朝阳一模)19.(本小题共14分) 已知椭圆:的离心率为,右顶点是抛物线的焦点直线:与椭圆相交于,两点()求椭圆的方程;()如果,点关于直线的对称点在轴上,求的值(2015东城二模)(19)(本小题满分13分)
3、已知椭圆过点,且离心率.()求椭圆的方程;()是否存在菱形,同时满足下列三个条件:点在直线上;点,在椭圆上;直线的斜率等于.如果存在,求出点坐标;如果不存在,说明理由.(2015东城一模)19(本小题满分14分)xyMONBPQ如图,已知椭圆C:的离心率,短轴的右端点为B, M(1,0)为线段OB的中点()求椭圆C的方程;()过点M任意作一条直线与椭圆C相交于两点P,Q试问在x轴上是否存在定点N,使得PNM =QNM ?若存在,求出点N的坐标;若不存在,说明理由(2015房山一模)19.(本小题满分14分)已知椭圆(I)求椭圆的离心率;(II)设椭圆上在第二象限的点的横坐标为,过点的直线与椭圆
4、的另一交点分别为.且的斜率互为相反数,两点关于坐标原点 的对称点分别为 ,求四边形 的面积的最大值.(2015丰台二模)18(本题满分13分)已知椭圆的左焦点是,上顶点是,且,直线与椭圆相交于,两点.()求椭圆的标准方程;()若在轴上存在点,使得与的取值无关,求点的坐标. (2015丰台一模)19(本小题满分14 分)设F 1 ,F 2分别为椭圆的左、右焦点,点P(1,) 在椭圆E 上,且点P 和F1 关于点C(0,) 对称。(1)求椭圆E 的方程;(2)过右焦点F2 的直线l与椭圆相交于 A,B两点,过点P且平行于 AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ的对
5、角线互相平分?若存在,求出l 的方程;若不存在,说明理由。(2015海淀一模)19(本小题满分14 分)设分别为椭圆E:的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且AB2 若椭圆E 的离心率为,求椭圆E 的方程; 设P 为椭圆E 上一点,且在第一象限内,直线与y 轴相交于点Q ,若以PQ 为直径的圆经过点F1,证明:(2015海淀二模)19.(本小题满分14分)已知椭圆:,右焦点,点在椭圆上.(I)求椭圆的标准方程;(II) 已知直线与椭圆交于两点,为椭圆上异于的动点.(i)若直线的斜率都存在,证明:;(ii) 若,直线分别与直线相交于点,直线与椭圆相交于点(异于点),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 北京 数学模拟 试题 分类 汇编 圆锥曲线
限制150内