数学分析之函数列与函数项级数(共37页).doc





《数学分析之函数列与函数项级数(共37页).doc》由会员分享,可在线阅读,更多相关《数学分析之函数列与函数项级数(共37页).doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十三章 函数列与函数项级数 教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。 教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。 教学时数:20学时 1 一致收敛性 一 函数列及极限函数:对定义在区间I上的函数列 ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“ ”定义. 例1 对定义在 内的等比函数列 , 用“ ”定义验证其收敛域为 , 且 例2 .用“”定义验证在内.
2、例3 考查以下函数列的收敛域与极限函数: . . . . . 设 为区间 上的全体有理数所成数列. 令 , . . , . 有 , , . ( 注意 .) 二. 函数列的一致收敛性: 问题: 若在数集D上 , . 试问: 通项 的解析性质是否必遗传给极限函数 ? 答案是否定的. 上述例1、例3说明连续性未能遗传,而例3说明可积性未能遗传. 例3说明虽然可积性得到遗传, 但 . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗
3、传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy准则 ) 函数列 在数集D上一致收敛, , . ( 介绍另一种形式 .) 证 ( 利用式 ) 易见逐点收敛. 设 ,有 . 令 , 对 D成立, 即 , , D. 推论1 在D上 , , . 推论2 设在数集D上 , . 若存在数列 D , 使 , 则函数列 在数集D上非一致收敛 . 应用系2 判断函数列 在数集D上非一致收敛时, 常选 为函数 在数集D上的最值点. 验证函数一致收敛性: 例4 . 证明函数列 在
4、R内一致收敛. 例5 . 证明在R内 , 但不一致收敛. 证 显然有 , 在点 处取得极大值 , . 由系2 , 不一致收敛. 例6 . 证明在 内 , . 证 易见 而 在 内成立. 由系1 , 例7 对定义在区间 上的函数列 证明: , 但在 上不一致收敛. P3839 例3, 参图13-4. 证 时, 只要 , 就有 . 因此, 在 上有 . , .于是, 在 上有 . 但由于 , , 因此 , 该函数列在 上不一致收敛. 例8 . 考查函数列 在下列区间上的一致收敛性: ; . 三. 函数项级数及其一致收敛性: 1 函数项级数及其和函数:, , 前 项部分和函数列 ,收敛点,收敛域,
5、和函数, 余项. 例9 定义在 内的函数项级数( 称为几何级数 ) 的部分和函数列为 , 收敛域为 . 2. 一致收敛性: 定义一致收敛性. Th2 ( Cauchy准则 ) 级数 在区间D上一致收敛, , 对 D成立. 推论 级数 在区间D上一致收敛, , . Th3 级数 在区间D上一致收敛, . 例10 证明级数 在R内一致收敛 . 证 令 = , 则 时 对 R成立. 例11 几何级数 在区间 上一致收敛;但在 内非一致收敛. 证 在区间 上 , 有 , . 一致收敛 ; 而在区间 内 , 取 , 有 , . 非一致收敛. ( 亦可由通项 在区间 内非一致收敛于零, 非一致收敛.) 几
6、何级数 虽然在区间 内非一致收敛 , 但在包含于 内的任何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此 , 我们说几何级数 在区间 内闭一致收敛 . 四. 函数项级数一致收敛判别法: 1. M - 判别法: Th 4 ( Weierstrass判别法 ) 设级数 定义在区间D上, 是收敛的正项级数.若当 充分大时, 对 D有| , 则 在D上一致收敛 . 证 然后用Cauchy准则. 亦称此判别法为优级数判别法. 称满足该定理条件的正项级数 是级数 的一个优级数. 于是Th 4 可以叙述为: 若级数 在区间D上存在优级数 , 则级数 在区间D上一致收敛 . 应用时, 常可试取
7、 .但应注意, 级数 在区间D上不存在优级数 , 级数 在区间D上非一致收敛. 注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在. 例12 判断函数项级数 和 在R内的一致收敛性 . 例13 设 是区间 上的单调函数. 试证明 : 若级数与 都绝对收敛, 则级数 在区间 上绝对并一致收敛 . 简证 , 留为作业. . 2. Abel判别法: Th 5 设 级数 在区间 上收敛; 对每个 , 数列 单调 ; 函数列 在 上一致有界, 即 , 使对 和 , 有. 则级数 在区间 上一致收敛 . ( 1P43 ) 2. Dirichlet判别法: Th 6 设 级数 的部分和函数列
8、在区间 上一致有界; 对于每一个 , 数列 单调; 在区间 上函数列 一致收敛于零. 则级数 在区间 上一致收敛 . 例14 判断函数项级数 在区间 上的一致收敛性. 解 记 . 则有 级数 收敛; 对每个 , ; 对 和 成立. 由Abel判别法, 在区间 上一致收敛. 例15 设数列 单调收敛于零 . 试证明 : 级数 在区间 上一致收敛. 证 在 上有 . 可见级数 的部分和函数列在区间 上一致有界 . 取 , . 就有级数 的部分和函数列在区间 上一致有界, 而函数列 对每一个 单调且一致收敛于零.由Dirichlet判别法,级数 在区间 上一致收敛. 其实 , 在数列 单调收敛于零的
9、条件下, 级数 在不包含 的任何区间上都一致收敛. 习 题 课 例1 设 , , . 且 , . 若对每个自然数 有| | 对 成立, 则函数列 在 上一致收敛于函数 . 例2 证明函数列 在区间 上非一致收敛. 例3 , . 讨论函数列 的一致收敛性. 解 0, . | 0| . 可求得 . 函数列 在区间 上非一致收敛. 例4 设函数 在区间 上连续 . 定义 . 试证明函数列 在区间 上一致收敛于零. 证法一 由 有界 . 设在区间 上| | . | | ; | | ; | | .注意到对 , . 0, , . 证法二 . 有界. 设在区间 上| | . 把函数 在点展开成具Lagran
10、ge型余项的 阶Taylor公式 , 注意到 , 就有 , , , . 所以 , 0, , . 例5 设 . 且 , . 令 , , . .试证明: 若对 和 , 有 , 则函数列 在区间 上一致收敛 . 证 对 取 , 使 时, 有 . 于是对任何自然数 和, 有 . 由Cauchy收敛准则 , 函数列 在区间 上一致收敛 . 例6 设在数集 上函数列 一致收敛于函数 . 若每个 在数集 上有界 , 则函数列 在数集 上一致有界 . 证 ( 先证函数 在数集 上有界 ) 设在 上有| | . 对 ,由函数列 在数集 上一致收敛, ,当 时 , 对 ,有 | | | , | | . 即函数 在
11、数集 上有界. ( 次证函数列 在数集 上一致有界 ) 时, 对 ,有 | | | | | 时,; 时; 时 .证 , ( 强调开方次数与 的次数是一致的). 由于 , 因此亦可用比值法求收敛半径.幂级数 的收敛区间: . 幂级数 的收敛域: 一般来说 , 收敛区间 收敛域. 幂级数 的收敛域是区间 、 、 或 之一. 例1 求幂级数 的收敛域 . 例2 求幂级数 的收敛域 . 例3 求下列幂级数的收敛域: ; . 2. 复合幂级数 : 令 , 则化为幂级数 .设该幂级数的收敛区间为 ,则级数 的收敛区间由不等式 确定.可相应考虑收敛域. 特称幂级数 为正整数)为缺项幂级数 .其中 . 应注意
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学分析 函数 级数 37

限制150内