数据仓库的数据质量(共5页).doc
《数据仓库的数据质量(共5页).doc》由会员分享,可在线阅读,更多相关《数据仓库的数据质量(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(一)数据质量的衡量标准、好处和问题数据质量的好坏是决定一个数据仓库成功的关键,但是需要从那些方面衡量数据仓库中数据的质量呢?可以从下列方面衡量系统中的数据质量:准确性:存储在系统中的关于一个数据元素的值是这个数据元素的正确值 ; 域完整性:一个属性的数值在合理且预定义的范围之内; 数据类型:一个数据属性的值通常是根据这个属性所定义的数据类型来存储的; 一致性:一个数据字段的形式和内容在多个源系统之间是相同的。 冗余性:相同的数据在一个系统中不能存储在超过一个地方; 完整性:系统中的属性不应该有缺失的值; 重复性:完全解决一个系统中记录的重复性的问题; 结构明确:在数
2、据项的结构可以分成不同部分的任何地方,这个数据项都必须包含定义好的结构; 数据异常:一个字段必须根据预先定义的目的来使用; 清晰:一个数据元素必须有正确的定义,也就是需要一个正确的命名; 时效性:用户决定了数据的时效性; 有用性:数据仓库中的每一个数据元素必须满足用户的一些需求; 符合数据完整性的规则:源系统中的关系数据库中存储的数据必须符合实体完整性及参考完整性规则。既然数据质量是成功的关键,那么,提高数据质量有那些好处:对实时信息的分析:高质量的数据提供及时的信息,是为用户创造的一个重要益处;更好的客户服务:完整而准确的信息能够大大提高客户服务的质量; 更多的机会:数据仓库中的高质量数据是
3、一个巨大的市场机会,它给产品和部门之间的交叉销售打开了机会的大门; 减少成本和风险:如果数据质量不好,明显的风险就是战略决策可能会导致灾难性的后果。 提高生产率:用户可以从真个企业的角度来看待数据仓库的信息,而全面的信息促使流程和真个操作更顺畅, 从而提高生长率; 可靠的战略决策制定:如果数据仓库的数据是可靠而高质量的,那么基于这些信息进行的决策就是好的决策。在数据处理过程中,会有那些数据质量问题: 字段中的虚假值 数据值缺失 对字段的非正规使用 晦涩的值 互相冲突的值 违反商业规则 主键重用 标志不唯一 不一致的值 不正确的值一个字段多种用途 错误的集成(二)数据质量的挑战数据的污染是在数据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据仓库 数据 质量
限制150内