高考数学-考前15天专题突破系列——立体几何解题方法技巧(共7页).doc
《高考数学-考前15天专题突破系列——立体几何解题方法技巧(共7页).doc》由会员分享,可在线阅读,更多相关《高考数学-考前15天专题突破系列——立体几何解题方法技巧(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2012年高考数学考前15天专题突破系列立体几何解题方法技巧立体几何需要我们去解决的问题概括起来就是三个方面,证明位置关系、求距离和求角;具体内容见下表:立体几何提 要主 要 内 容重 点 内 容位置关系 两条异面直线相互垂直、直线与平面平行、直线与平面斜交、直线与平面垂直、两个平面斜交、两个平面相互垂直两条异面直线相互垂直、直线与平面平行、直线与平面垂直、两个平面相互垂直距 离两条异面直线的距离、点到平面的距离、直线到平面的距离、两个平面的距离两条异面直线的距离、点到平面的距离角 度两条异面直线所成的角、直线和平面所成的角、二面角两条异面直线所成的角、直线和平面所成
2、的角、二面角二、主要解题方法:(一)位置关系1、两条异面直线相互垂直 证明方法:证明两条异面直线所成角为90;证明两条异面直线的方向量相互垂直2、直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向量和这个平面内的一个向量相互平行;证明这条直线的方向量和这个平面的法向量相互垂直。3、直线和平面垂直证明方法:证明直线和平面内两条相交直线都垂直,证明直线的方向量与这个平面内不共线的两个向量都垂直;证明直线的方向量与这个平面的法向量相互平行。4、平面和平面相互垂直证明方法:证明这两个平面所成二面角的平面角为90;证明一个平面内的一条直线垂直于另外一个平面;证明两个平
3、面的法向量相互垂直。(二)求距离求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。1、两条异面直线的距离求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度,线段长度的求法也可以用向量来帮助解决,求线段AB的长度,可以利用来帮助解决,但是前提条件是我们要知道的模和每两个向量所成的角。利用公式(其中A、B分别为两条异面直线上的一点,为这两条异面直线的法向量)2、点到平面的距离求法:“一找二证三求”,三步都必须要清楚地写出来。等体积法。向量法,利用公式(其中A为已知点,B为这个平面内的任意一
4、点,这个平面的法向量)(三)求角1、两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。2、直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来。向量法,先求直线的方向量于平面的法向量所成的角,那么所要求的角为或3、平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。通过射影面积来求(在其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 考前 15 专题 突破 系列 立体几何 解题 方法 技巧
限制150内