2019年江苏省高考数学试卷以及答案解析(共22页).doc
《2019年江苏省高考数学试卷以及答案解析(共22页).doc》由会员分享,可在线阅读,更多相关《2019年江苏省高考数学试卷以及答案解析(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上绝密启用前2019年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1(5分)已知集合A1,0,1,6,Bx|x0,xR,则AB 2(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是 3(5分)如图是一个算法流程图,则输出的S的值是 4(5分)函数y的定义域是 5(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是 6(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 7(5分)在平面直角坐标
2、系xOy中,若双曲线x21(b0)经过点(3,4),则该双曲线的渐近线方程是 8(5分)已知数列an(nN*)是等差数列,Sn是其前n项和若a2a5+a80,S927,则S8的值是 9(5分)如图,长方体ABCDA1B1C1D1的体积是120,E为CC1的中点,则三棱锥EBCD的体积是 10(5分)在平面直角坐标系xOy中,P是曲线yx+(x0)上的一个动点,则点P到直线x+y0的距离的最小值是 11(5分)在平面直角坐标系xOy中,点A在曲线ylnx上,且该曲线在点A处的切线经过点(e,1)(e为自然对数的底数),则点A的坐标是 12(5分)如图,在ABC中,D是BC的中点,E在边AB上,B
3、E2EA,AD与CE交于点O若6,则的值是 13(5分)已知,则sin(2+)的值是 14(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数当x(0,2时,f(x),g(x)其中k0若在区间(0,9上,关于x的方程f(x)g(x)有8个不同的实数根,则k的取值范围是 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15(14分)在ABC中,角A,B,C的对边分别为a,b,c(1)若a3c,b,cosB,求c的值;(2)若,求sin(B+)的值16(14分)如图,在直三棱柱
4、ABCA1B1C1中,D,E分别为BC,AC的中点,ABBC求证:(1)A1B1平面DEC1;(2)BEC1E17(14分)如图,在平面直角坐标系xOy中,椭圆C:+1(ab0)的焦点为F1(1,0),F2(1,0)过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x1)2+y24a2交于点A,与椭圆C交于点D连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1已知DF1(1)求椭圆C的标准方程;(2)求点E的坐标18(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径)规划在公路l上选两个点P,Q,并修建两段直线型道路PB,Q
5、A,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB10,AC6,BD12(单位:百米)(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离19(16分)设函数f(x)(xa)(xb)(xc),a,b,cR,f(x)为f(x)的导函数(1)若abc,f(4)8,求a的值;(2)若ab,bc,且f(x)和f(x)的零点均在集合3,1,3中,求f(x)的极小值;(3
6、)若a0,0b1,c1,且f(x)的极大值为M,求证:M20(16分)定义首项为1且公比为正数的等比数列为“M数列”(1)已知等比数列an(nN*)满足:a2a4a5,a34a2+4a10,求证:数列an为“M数列”;(2)已知数列bn(nN*)满足:b11,其中Sn为数列bn的前n项和求数列bn的通项公式;设m为正整数,若存在“M数列”cn(nN*),对任意正整数k,当km时,都有ckbkck+1成立,求m的最大值【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.选修4-2:矩阵与变换
7、(本小题满分10分)21(10分)已知矩阵A(1)求A2;(2)求矩阵A的特征值B.选修4-4:坐标系与参数方程(本小题满分10分)22(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为sin(+)3(1)求A,B两点间的距离;(2)求点B到直线l的距离C.选修4-5:不等式选讲(本小题满分0分)23设xR,解不等式|x|+|2x1|2【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24(10分)设(1+x)na0+a1x+a2x2+anxn,n4,nN*已知a322a2a4(1)求n的值;(2)设(1
8、+)na+b,其中a,bN*,求a23b2的值25(10分)在平面直角坐标系xOy中,设点集An(0,0),(1,0),(2,0),(n,0),Bn(0,1),(n,1),n(0,2),(1,2),(2,2),(n,2),nN*令MnAnBnn从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离(1)当n1时,求X的概率分布;(2)对给定的正整数n(n3),求概率P(Xn)(用n表示)2019年江苏省高考数学答案解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1【分析】直接利用交集运算得答案【解答】解:A1,0,1,6,Bx|x0,xR,AB1
9、,0,1,6x|x0,xR1,6故答案为:1,6【点评】本题考查交集及其运算,是基础题2【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值【解答】解:(a+2i)(1+i)(a2)+(a+2)i的实部为0,a20,即a2故答案为:2【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题3【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【解答】解:模拟程序的运行,可得x1,S0S0.5不满足条件x4,执行循环体,x2,S1.5不满足条件x4,执行循环体,x3,S3不满足条件x4,执行
10、循环体,x4,S5此时,满足条件x4,退出循环,输出S的值为5故答案为:5【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题4【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案【解答】解:由7+6xx20,得x26x70,解得:1x7函数y的定义域是1,7故答案为:1,7【点评】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题5【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差【解答】解:一组数据6,7,8,8,9,10的平均数为:(6+7+8+8+9+10)8,该组数据的方差为:S2(68
11、)2+(78)2+(88)2+(88)2+(98)2+(108)2故答案为:【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题6【分析】基本事件总数n10,选出的2名同学中至少有1名女同学包含的基本事件个数m+7,由此能求出选出的2名同学中至少有1名女同学的概率【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n10,选出的2名同学中至少有1名女同学包含的基本事件个数:m+7,选出的2名同学中至少有1名女同学的概率是p故答案为:【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,
12、是基础题7【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求【解答】解:双曲线x21(b0)经过点(3,4),解得b22,即b又a1,该双曲线的渐近线方程是y故答案为:y【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题8【分析】设等差数列an的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值【解答】解:设等差数列an的首项为a1,公差为d,则,解得6(5)+15216故答案为:16【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题9【分析】推导出ABBCDD1120,三棱锥EBCD的体
13、积:VEBCDABBCDD1,由此能求出结果【解答】解:长方体ABCDA1B1C1D1的体积是120,E为CC1的中点,ABBCDD1120,三棱锥EBCD的体积:VEBCDABBCDD110故答案为:10【点评】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题10【分析】利用导数求平行于x+y0的直线与曲线yx+(x0)的切点,再由点到直线的距离公式求点P到直线x+y0的距离的最小值【解答】解:由yx+(x0),得y1,设斜率为1的直线与曲线yx+(x0)切于(x0,),由,解得(x00)曲线yx+(x0)上,点P()到直
14、线x+y0的距离最小,最小值为故答案为:4【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题11【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可【解答】解:设A(x0,lnx0),由ylnx,得y,则该曲线在点A处的切线方程为ylnx0,切线经过点(e,1),即,则x0eA点坐标为(e,1)故答案为:(e,1)【点评】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题12【分析】首先算出,然后用、表示出、,结合6得,进一步可得结果【解答】解:设(),+()(1)+,(),+,66
15、()(+)(+)+,+,3,故答案为:【点评】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力13【分析】由已知求得tan,分类利用万能公式求得sin2,cos2的值,展开两角和的正弦求sin(2+)的值【解答】解:由,得,解得tan2或tan当tan2时,sin2,cos2,sin(2+);当tan时,sin2,cos2,sin(2+)综上,sin(2+)的值是故答案为:【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题14【分析】由已知函数解析式结合周期性作出图象,数形结合得答案【解答】解:作出函数f(x)与g(x)的图象如图,由图
16、可知,函数f(x)与g(x)(1x2,3x4,5x6,7x8)仅有2个实数根;要使关于x的方程f(x)g(x)有8个不同的实数根,则f(x),x(0,2与g(x)k(x+2),x(0,1的图象有2个不同交点,由(1,0)到直线kxy+2k0的距离为1,得,解得k(k0),两点(2,0),(1,1)连线的斜率k,k即k的取值范围为,)故答案为:,)【点评】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15【分析】(1)由余弦定理得:cosB,由此能求出c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 江苏省 高考 数学试卷 以及 答案 解析 22
限制150内