矩阵与变换练习题(共6页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《矩阵与变换练习题(共6页).doc》由会员分享,可在线阅读,更多相关《矩阵与变换练习题(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 矩阵与变换练习题1求矩阵A的逆矩阵解设矩阵A的逆矩阵为,则 ,即.故解得从而A的逆矩阵为A1.2在平面直角坐标系xOy中,设椭圆4x2y21在矩阵A对应的变换作用下得到曲线F,求F的方程解设P(x0,y0)是椭圆上任意一点,点P(x0,y0)在矩阵A对应的变换下变为点P(x0,y0)则有 ,即又点P在椭圆上,故4xy1,从而xy1.曲线F的方程是x2y21.3已知矩阵M,N,且MN.(1)求实数a、b、c、d的值;(2)求直线y3x在矩阵M所对应的线性变换作用下的像的方程解(1)由题设得:解得(2)矩阵M对应的线性变换将直线变成直线(或点),可取直线y3x上的两点(
2、0,0),(1,3),由 , ,得点(0,0),(1,3)在矩阵M所对应的线性变换作用下的像是点(0,0),(2,2)从而,直线y3x在矩阵M所对应的线性变换作用下的像的方程为yx.4若点A(2,2)在矩阵M对应变换的作用下得到的点为B(2,2),求矩阵M的逆矩阵解由题意,知M,即,解得M.由M1M,解得M1.5已知二阶矩阵A,矩阵A属于特征值11的一个特征向量为a1,属于特征值24的一个特征向量为a2,求矩阵A.解由特征值、特征向量定义可知,Aa11a1,即1,得同理可得解得a2,b3,c2,d1.因此矩阵A.6 已知矩阵M,求M的特征值及属于各特征值的一个特征向量 解由矩阵M的特征多项式f
3、()(3)210,解得12,24,即为矩阵M的特征值设矩阵M的特征向量为,当12时,由M2,可得可令x1,得y1,1是M的属于12的特征向量当24时,由M4,可得取x1,得y1,2是M的属于24的特征向量7.求曲线C:xy1在矩阵M对应的变换作用下得到的曲线C1的方程解设P(x0,y0)为曲线C:xy1上的任意一点,它在矩阵M对应的变换作用下得到点Q(x,y)由 ,得解得因为P(x0,y0)在曲线C:xy1上,所以x0y01.所以1,即x2y24.所以所求曲线C1的方程为x2y24.8已知矩阵A,B,求(AB)1.解AB .设(AB)1,则由(AB)(AB)1,得 ,即,所以解得故(AB)1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 变换 练习题
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内