高中数学立体几何经典常考题型(共9页).doc
《高中数学立体几何经典常考题型(共9页).doc》由会员分享,可在线阅读,更多相关《高中数学立体几何经典常考题型(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在ABC中,ABC,O为AB边上一点,且3OB3OC2AB,已知PO平面ABC,2DA2AOPO,且DAPO.(1)求证:平面PBD平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明OBOC,又ABC,OCB,BOC.COAB.又PO平面ABC,OC平面ABC,POOC.又PO,AB平面
2、PAB,POABO,CO平面PAB,即CO平面PDB.又CO平面COD,平面PDB平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA1,则POOBOC2,DA1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,1,1),(0,1,1),(2,2,0),(0,3,1).设平面BDC的一个法向量为n(x,y,z),令y1,则x1,z3,n(1,1,3).设PD与平面BDC所成的角为,则sin .即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量
3、(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EFB1C.(2)求二面角EA1DB1的余弦值.(1)证明由正方形的性质可知A1B1ABDC,且A1B1ABDC,所以四边形A1B1CD为平行四边形,从而B1CA1D,又A1D面A1DE,B1C面A1DE,于是B1C面A1DE.又B1C面B1CD1,面A1DE面B
4、1CD1EF,所以EFB1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1AB,AA1AD,ABAD且AA1ABAD.以A为原点,分别以,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1(r1,s1,t1),而该面上向量,(0,1,1),由n1,n1得r1,s1,t1应满足的方程组(1,1,1)为其一组解,所以可取n1(1,1,1).设平面A1B1CD的一个
5、法向量n2(r2,s2,t2),而该面上向量(1,0,0),(0,1,1),由此同理可得n2(0,1,1).所以结合图形知二面角EA1DB1的余弦值为.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥PABCD中,平面PAD平面ABCD,PAPD,PAPD,ABAD,AB1,AD2,ACCD.(1)求证:PD平面PAB;(2)求直线PB与平面PCD所成角的正
6、弦值;(3)在棱PA上是否存在点M,使得BM平面PCD?若存在,求的值;若不存在,说明理由.(1)证明因为平面PAD平面ABCD,平面PAD平面ABCDAD,ABAD,所以AB平面PAD,所以ABPD.又PAPD,ABPAA,所以PD平面PAB.(2)解取AD的中点O,连接PO,CO.因为PAPD,所以POAD.因为PO平面PAD,平面PAD平面ABCD,所以PO平面ABCD.因为CO平面ABCD,所以POCO.因为ACCD,所以COAD.如图,建立空间直角坐标系Oxyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,1,0),P(0,0,1).设平面PCD的一个法向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 立体几何 经典 题型
限制150内