三角恒等变换知识点总结(共8页).doc
《三角恒等变换知识点总结(共8页).doc》由会员分享,可在线阅读,更多相关《三角恒等变换知识点总结(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章 三角恒等变换一、知识点总结1、两角和与差的正弦、余弦和正切公式:; (); ()2、二倍角的正弦、余弦和正切公式:升幂公式降幂公式, 3、 (后两个不用判断符号,更加好用)4、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 形式。,其中5(1)积化和差公式sincos=sin(+)+sin(-) cossin=sin(+)-sin(-)coscos=cos(+)+cos(-) sinsin= -cos(+)-cos(-)(2)和差化积公式sin+sin= sin-sin=cos+cos= cos-cos= -tan+ cot= tan-
2、cot= -2cot21+cos= 1-cos=1sin=()26。(1)升幂公式1+cos= 1-cos=1sin=()2 1=sin2+ cos2sin=(2)降幂公式sin2 cos2sin2+ cos2=1 sincos=7、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:是的二倍;是的二倍;是的二倍;是
3、的二倍; ;问: ; ;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常用降幂公式有: ; 。降幂并非绝对,有时需要升幂,如对无理式常用升幂化为有理式,常用升幂公式有: ; ;(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。 如:; ; ; ; ; = ; = ;(其中 ;) ; ;(6)三角
4、函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:见切化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,特殊值与特殊角的三角函数互化。如: ; 。 ; ;推广: ;推广:二、基础训练1下列各式中,值为的是 A、 B、C、D、(答:C);2已知,那么的值为_(答:);3的值是_(答:4);4已知,求的值(用a表示)甲求得的结果是,乙求得的结果是,对甲、乙求得的结果的正确性你的判断是_(答:甲、乙都对)5已知,那么的值是_(答:);6已知,且,求的值(答:)7求值(答:1);8已知,求的值(答:)9已知A、B为锐角,且满足,则_(答:);10若,化简为_(答:)11
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角 恒等 变换 知识点 总结
限制150内