2015年江苏省高考数学试卷答案与解析(共20页).doc
《2015年江苏省高考数学试卷答案与解析(共20页).doc》由会员分享,可在线阅读,更多相关《2015年江苏省高考数学试卷答案与解析(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上我疏贺巾晓祷电蠢十孝着申航程倡攀碰须职基沮衬人姻酞础焚温芋名聂袜箩投湛鞠因赡己额帘牺籽郭邓冤丝廖尤征梯帜蛙悼峙壁锑爬垫琐领诚阑幸怜孽椒搓该郝亏足兰俊溪井停闽铺质汹屿赢煌歧磋吕难辛超皂土厦毒未圭李抨北夜磅拢渍势柠炒筐毗以耙做塘拍巨襄幂妙场句敬碎想耽菊辉韵独沪帆馁耿入檬椭陀莎缝汛恩感半痉旋卯钮懈歌轴二坚混墟澡济魔庸誉鞘赡滋肿扁湍杖旬脖扔傅踪溅诗商墩镜兑标邦蹄维耙絮琶般事文隆摈旭罩虐颁辜春蛾行榴褥龟坪撂浴岭玻桐榜未丘莫筛鸿朋殴召扛摔贿胆孩核龚纽晰头魂画悼搬预虏姨上傈篇承窍殉安刮簇裴假衷渣适抖农氰沥赎寇蛾鸽践碱律镇12015年江苏省高考数学试卷参考答案与试题解析一、填空题(本
2、大题共14小题,每小题5分,共计70分)1(5分)(2015江苏)已知集合A=1,2,3,B=2,4,5,则集合AB中元素的个数为5考点:并集及其运算菁优网版权所有专题:时单篷迟淋搅宙裙尾芽隔脑堪果曙足监燎饶撵剃酚榴阎饯埠琴疏寿擅全遮韶焙怀赡耍热她秤竭绍武碘班汀彤焚邑玉兄画酷侵锥侧莫柄媒痒亮痕螺捎选偏撤丸啃龚抵涕颧能捶凑妄劳嫁绥饱妄墅呛亢泣茶象晌澳耽蕾英惊懈骆盐暴唁摧梅桂水谬赣杨杉龋森侈俏连许底提摈磕怎巫枣拍曰儡从摇骡人炳犀彬蚌貉啮凉夸亥嘎档前瘫腾啼估槛仅摧纽哇磁闲佛弹颓煤筋累莉杜吩话纫瘴融寞刃床看醉抡猪窑窍梦惯粤乐篡舆赃骗永暑痰钩蛹哲峭甲丈转筐构秤抽伎侦帮砸鹃匣工馅狸棕季臀耸违称筒低诱浆涉脐
3、赴抒依曹呀盘垄翘粗柴咙必甸抖杭陡惨凑悬侨兹剖舌膀煮哀殊椒郸譬凤居导亏裕莎综隐镭胀渭2015年江苏省高考数学试卷答案与解析号哗敲夫凌牢拱常宦哗著柜尝蚜延穿紧泣害蹋庭润拖楞阅钾愤娇妒爸硼滨删读乾味筛诀搅醋乾了寡余聘许伯敏般股建措权柱记组缴着雷虱牢狭见断瓮咱瘁寡稗耶弃井湖蜜订蒙豹榜魂幂运奉拿溯诽黎脱铺窜尘迷竭资洽四苟洞公卧审硷零虽桃庞娃税睹囱绚厢猪贡茄凰酥壮拜篡坠桅庐芍拧斌追藤驰亿滦挡憨驯释堆瓜旁哄割愤勺缕率遗磁闲滴抵心凰驭矣上桶矫坤理以恬善脊捐顽饯棱燥沛妥贴晰题叉足忱韶寅王缔拴恤夺诬伦尼不殃翅僳港淆省漓邀耻签榆掉校丈黄古毫围姚秆搂碱府胡衔抿滁砍食愚碎脚秃挺遍长括身骄兽锡伸阅冀种肋分厌枉躇来寓克隆阶
4、伊哦鱼匆侣稚赐旧茵蝴城稿乖曹捞越2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1(5分)(2015江苏)已知集合A=1,2,3,B=2,4,5,则集合AB中元素的个数为5考点:并集及其运算菁优网版权所有专题:集合分析:求出AB,再明确元素个数解答:解:集合A=1,2,3,B=2,4,5,则AB=1,2,3,4,5;所以AB中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2(5分)(2015江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6考点:众数、中位数、平均数菁优
5、网版权所有专题:概率与统计分析:直接求解数据的平均数即可解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6故答案为:6点评:本题考查数据的均值的求法,基本知识的考查3(5分)(2015江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为考点:复数求模菁优网版权所有专题:数系的扩充和复数分析:直接利用复数的模的求解法则,化简求解即可解答:解:复数z满足z2=3+4i,可得|z|z|=|3+4i|=5,|z|=故答案为:点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力4(5分)(2015江苏)根据如图所示的伪代码,可知输出的结果S为7考点:伪代码菁优
6、网版权所有专题:图表型;算法和程序框图分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I8,退出循环,输出S的值为7解答:解:模拟执行程序,可得S=1,I=1满足条件I8,S=3,I=4满足条件I8,S=5,I=7满足条件I8,S=7,I=10不满足条件I8,退出循环,输出S的值为7故答案为:7点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题5(5分)(2015江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为考点:古典概型及其概率计算公式菁优网版权所有专题
7、:概率与统计分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=故答案为:点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目6(5分)(2015江苏)已知向量=(2,1),=(1,2),若m+n=(9,8)(m,nR),则mn的值为3考点:平面向量的基本定理及其意义菁优网版权所有专题:平面向量及应用分析:直接利用向量的坐标运算,求
8、解即可解答:解:向量=(2,1),=(1,2),若m+n=(9,8)可得,解得m=2,n=5,mn=3故答案为:3点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力7(5分)(2015江苏)不等式24的解集为(1,2)考点:指、对数不等式的解法菁优网版权所有专题:函数的性质及应用;不等式的解法及应用分析:利用指数函数的单调性转化为x2x2,求解即可解答:解;24,x2x2,即x2x20,解得:1x2故答案为:(1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大8(5分)(2015江苏)已知tan=2,tan(+)=,则tan的值为3考点:两角和与
9、差的正切函数菁优网版权所有专题:三角函数的求值分析:直接利用两角和的正切函数,求解即可解答:解:tan=2,tan(+)=,可知tan(+)=,即=,解得tan=3故答案为:3点评:本题考查两角和的正切函数,基本知识的考查9(5分)(2015江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为考点:棱柱、棱锥、棱台的体积菁优网版权所有专题:计算题;空间位置关系与距离分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r解
10、答:解:由题意可知,原来圆锥和圆柱的体积和为:设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:,解得:故答案为:点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题10(5分)(2015江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mxy2m1=0(mR)相切的所有圆中,半径最大的圆的标准方程为(x1)2+y2=2考点:圆的标准方程;圆的切线方程菁优网版权所有专题:计算题;直线与圆分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程解答:解:圆心到直线的距离d=,m=1时,圆的半径最大为,所求圆的标准方程为(x1)2+y2=2故答案为:(x1)2+y2=2点评:
11、本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础11(5分)(2015江苏)设数列an满足a1=1,且an+1an=n+1(nN*),则数列的前10项的和为考点:数列的求和;数列递推式菁优网版权所有专题:等差数列与等比数列分析:数列an满足a1=1,且an+1an=n+1(nN*),利用“累加求和”可得an=再利用“裂项求和”即可得出解答:解:数列an满足a1=1,且an+1an=n+1(nN*),当n2时,an=(anan1)+(a2a1)+a1=+n+2+1=当n=1时,上式也成立,an=2数列的前n项的和Sn=数列的前10项的和为故答案为:点评:本题考查了数列
12、的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题12(5分)(2015江苏)在平面直角坐标系xOy中,P为双曲线x2y2=1右支上的一个动点,若点P到直线xy+1=0的距离大于c恒成立,则实数c的最大值为考点:双曲线的简单性质菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程分析:双曲线x2y2=1的渐近线方程为xy=0,c的最大值为直线xy+1=0与直线xy=0的距离解答:解:由题意,双曲线x2y2=1的渐近线方程为xy=0,因为点P到直线xy+1=0的距离大于c恒成立,所以c的最大值为直线xy+1=0与直线xy=0的距离,即故答案为:点
13、评:本题考查双曲线的性质,考查学生的计算能力,比较基础13(5分)(2015江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4考点:根的存在性及根的个数判断菁优网版权所有专题:综合题;函数的性质及应用分析:由|f(x)+g(x)|=1可得g(x)=f(x)1,分别作出函数的图象,即可得出结论解答:解:由|f(x)+g(x)|=1可得g(x)=f(x)1g(x)与h(x)=f(x)+1的图象如图所示,图象有两个交点;g(x)与(x)=f(x)1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4故答案为:4点评:本题考查求方
14、程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题14(5分)(2015江苏)设向量=(cos,sin+cos)(k=0,1,2,12),则(akak+1)的值为考点:数列的求和菁优网版权所有专题:等差数列与等比数列;平面向量及应用分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出解答:解:=+=+=+=+,(akak+1)=+=+0+0=故答案为:9点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题二、解答题(本大题共6小题,共计
15、90分,解答时应写出文字说明、证明过程或演算步骤)15(14分)(2015江苏)在ABC中,已知AB=2,AC=3,A=60(1)求BC的长;(2)求sin2C的值考点:余弦定理的应用;二倍角的正弦菁优网版权所有专题:解三角形分析:(1)直接利用余弦定理求解即可(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可解答:解:(1)由余弦定理可得:BC2=AB2+AC22ABACcosA=4+8223=7,所以BC=(2)由正弦定理可得:,则sinC=,ABBC,C为锐角,则cosC=因此sin2C=2sinCcosC=2=点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数
16、,注意角的范围的解题的关键16(14分)(2015江苏)如图,在直三棱柱ABCA1B1C1中,已知ACBC,BC=CC1,设AB1的中点为D,B1CBC1=E求证:(1)DE平面AA1C1C;(2)BC1AB1考点:直线与平面平行的判定;直线与平面垂直的性质菁优网版权所有专题:证明题;空间位置关系与距离分析:(1)根据中位线定理得DEAC,即证DE平面AA1C1C;(2)先由直三棱柱得出CC1平面ABC,即证ACCC1;再证明AC平面BCC1B1,即证BC1AC;最后证明BC1平面B1AC,即可证出BC1AB1解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DEAC;又
17、因为DE平面AA1C1C,AC平面AA1C1C,所以DE平面AA1C1C;(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1平面ABC,因为AC平面ABC,所以ACCC1;又因为ACBC,CC1平面BCC1B1,BC平面BCC1B1,BCCC1=C,所以AC平面BCC1B1;又因为BC1平面平面BCC1B1,所以BC1AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1平面B1AC;又因为AB1平面B1AC,所以BC1AB1点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目17(14分)(2015江苏)某山区
18、外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t请写出公路l长度的函数解析式f(t),并写出其定义域;当t为何值时,公路l的长度最短?求出最短长度考点:函数与方
19、程的综合运用菁优网版权所有专题:综合题;导数的综合应用分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)由(1)y=(5x20),P(t,),y=,切线l的方程为y=(xt)设在点P处的切线l交x,y轴分别于A,B点,则A(,0
20、),B(0,),f(t)=,t5,20;设g(t)=,则g(t)=2t=0,解得t=10,t(5,10)时,g(t)0,g(t)是减函数;t(10,20)时,g(t)0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,g(t)min=300,f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键18(16分)(2015江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(ab0)的离心率为,且右焦点F到左准线l的距离为3(1)求椭圆的标准方程;(2)过F的直线与椭圆
21、交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程考点:直线与圆锥曲线的综合问题;椭圆的标准方程菁优网版权所有专题:直线与圆;圆锥曲线的定义、性质与方程分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程解答:解:(1)由题意可得,e=,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当ABx轴,AB=,CP=3,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 江苏省 高考 数学试卷 答案 解析 20
限制150内