数列题型及解题方法归纳总结.doc
《数列题型及解题方法归纳总结.doc》由会员分享,可在线阅读,更多相关《数列题型及解题方法归纳总结.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。一、典型题的技巧解法1、求通项公式(1)观察法。(2)由递推公式求通项。对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、 已知an满足an+1=an+2,而且a1=1。求an。例1、解 an+1-an=2为常数 an是首项为1,公差为2的等差数列an=1+2(n-1) 即an=2n-1例2、已知满足
2、,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,求.解: 由已知可知令n=1,2,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+(an-an-1) 说明 只要和f(1)+f(2)+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,(n-1)代入,可得n-1个等式累加而求an。(3)递推式为an+1=pan+q(p,q为常数)例4、中,对于n1(nN)有,求.解法一: 由已知递推式得an+1=3an+2,an=3an-1+2。两式相减:an+1-an=3(an-an-1)因此数列an+1-an是公比为3的等比数列,其首项为a2-a1=
3、(31+2)-1=4an+1-an=43n-1 an+1=3an+2 3an+2-an=43n-1 即 an=23n-1-1解法二: 上法得an+1-an是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,an-an-1=43n-2,把n-1个等式累加得: an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数) 由上题的解法,得: (5)递推式为思路:设,可以变形为:,想于是an+1-an是公比为的等比数列,就转化为前面的类型。求。 (6)递推式为Sn与an的关系式关系;(2)试用n表示an。 上式两边同乘以2n+1得2n+1an+1=2n
4、an+2则2nan是公差为2的等差数列。2nan= 2+(n-1)2=2n数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。2、错项相减法:适用于差比数列(如果等差,等比,那么叫做差比数列)即把每一项都乘以的公比,向后错一项,再对应同次项相减,转化为等比数列求和。3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。适用于数列和(其中等差)可裂项为:,等差数列前项和的最值问题:1、若等差数列的首项,公差,则前项和有最大值。()若已知通项,则最大;()若已知,则当取最靠近的非零自然数时最大;2、若等差数列的首项,公差,则前项和有
5、最小值()若已知通项,则最小;()若已知,则当取最靠近的非零自然数时最小;数列通项的求法:公式法:等差数列通项公式;等比数列通项公式。已知(即)求,用作差法:。已知求,用作商法:。已知条件中既有还有,有时先求,再求;有时也可直接求。若求用累加法:。已知求,用累乘法:。已知递推关系求,用构造法(构造等差、等比数列)。特别地,(1)形如、(为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求;形如的递推数列都可以除以得到一个等差数列后,再求。(2)形如的递推数列都可以用倒数法求通项。(3)形如的递推数列都可以用对数法求通项。(7)(理科)数学归纳法。(8)当遇到时,分奇数项偶数项讨论
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 题型 解题 方法 归纳 总结
限制150内