排列组合例题精选.doc
《排列组合例题精选.doc》由会员分享,可在线阅读,更多相关《排列组合例题精选.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 10.1排列与组合10.1.1学习目标 掌握排列、组合问题的解题策略10.1.2重点 (1),特殊元素优先安排的策略: (2),合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略。10.1.3难点综合运用解题策略解决问题。10.1.4学习过程:(1)知识梳理 1分类计数原理(加法原理):完成一件事,有几类办法,在第一类中有种有不同的方法,在第2类中有种不同的方法在第n类型有种不同的方法,那么完成这件事共有种不同的方法。2分步计数原理(乘法原理):完成一
2、件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法;那么完成这件事共有种不同的方法。特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏。3排列:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4排列数:从n个不同元素中取出m(mn)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素
3、的一个排列数,用符号表示.5排列数公式: 特别提醒:(1)规定0! = 1 (2)含有可重元素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,.an其中限重复数为n1、n2nk,且n = n1+n2+nk , 则S的排列个数等于. 例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数. 6组合:从n个不同的元素中任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 7组合数公式: 8两个公式:_ 特别提醒:排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成
4、一组”,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1,六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.考点二:组合问题例2, 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.考点三:综合问题例3, 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球
5、,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?10.1.5当堂测试1,从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A,70 种 B,80种 C,100 种 D,140 种2,2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A, 48 种 B,12种 C,18种 D36种3,从0,1,2,3,4,5这六个数字中任取两个奇
6、数和两个偶数,组成没有重复数字的四位数的个数为 ( )A,48 B, 12 C,180 D,162.4,甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A,150种 B,180种 C,300种 D,345种5,甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )A,6 B,12 C 30 D36 6,用0 到9 这10 个 数字,可以组成没有重复数字的三位偶数的个数为 ( )A324 B,328 C,360 D,6487,从10名大学毕业生中选3人担任村长助理,则甲、
7、乙 至少有1人入选,而丙 没有入选的不同选法的总数为 ( )A,85 B,56 C,49 D,288,将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为 ( )A,18 B,24 C,30 D,309,3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( )A,360 B,288 C,216 D,9610.1.6 参考答案例1,解 (1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A种站法,然后其余5人在另外5个位置上作全排列有A种站法,根据分步乘法计
8、数原理,共有站法:AA=480(种).方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A种站法,然后中间4人有A种站法,根据分步乘法计数原理,共有站法:AA=480(种).方法三 若对甲没有限制条件共有A种站法,甲在两端共有2A种站法,从总数中减去这两种情况的排列数,即共有站法:A-2A=480(种).(2)方法一 先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A种站法,再把甲、乙进行全排列,有A种站法,根据分步乘法计数原理,共有AA=240(种)站法.方法二 先把甲、乙以外的4个人作全排列,有A种站法,再在5个空档中选出一个供甲、乙放入,有A种方法,最后让甲
9、、乙全排列,有A种方法,共有AAA=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A种站法,故共有站法为AA=480(种).也可用“间接法”,6个人全排列有A种站法,由(2)知甲、乙相邻有AA=240种站法,所以不相邻的站法有A-AA=720-240=480(种).(4)方法一 先将甲、乙以外的4个人作全排列,有A种,然后将甲、乙按条件插入站队,有3A种,故共有A(3A)=144(种)站法.方法二 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A种,然后把甲、
10、乙及中间2人看作一个“大”元素与余下2人作全排列有A种方法,最后对甲、乙进行排列,有A种方法,故共有AAA=144(种)站法.(5)方法一 首先考虑特殊元素,甲、乙先站两端,有A种,再让其他4人在中间位置作全排列,有A种,根据分步乘法计数原理,共有AA=48(种)站法.方法二 首先考虑两端两个特殊位置,甲、乙去站有A种站法,然后考虑中间4个位置,由剩下的4人去站,有A种站法,由分步乘法计数原理共有AA=48(种)站法.(6)方法一 甲在左端的站法有A种,乙在右端的站法有A种,且甲在左端而乙在右端的站法有A种,共有A-2A+A=504(种)站法.方法二 以元素甲分类可分为两类:甲站右端有A种站法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 例题 精选
限制150内