2022年同济第六版《高等数学》教案WORD版-第03章中值定理与导数的应用.pdf
《2022年同济第六版《高等数学》教案WORD版-第03章中值定理与导数的应用.pdf》由会员分享,可在线阅读,更多相关《2022年同济第六版《高等数学》教案WORD版-第03章中值定理与导数的应用.pdf(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、资料收集于网络如有侵权请联系网站删除谢谢精品文档第三章中值定理与导数的应用教学目的:1、理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。2、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。3、会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。4、掌握用洛必达法则求未定式极限的方法。5、知道曲率和曲率半径的概念,会计算曲率和曲率半径。6、知道方程近似解的二分法及切线性。教学重点 :1、罗尔定理、拉格朗日中值定理;2、函数的极值,判断函数的单调性和求函数极值的方法;3、函
2、数图形的凹凸性;4、洛必达法则。教学难点:1、罗尔定理、拉格朗日中值定理的应用;2、极值的判断方法;3、图形的凹凸性及函数的图形描绘;4、洛必达法则的灵活运用。 3 1 中值定理一、罗尔定理费马引理设函数 f(x)在点 x0的某邻域 U(x0)内有定义并且在 x0处可导如果对任意xU(x0)有f(x) f(x0) (或 f(x) f(x0)那么 f (x0) 0罗尔定理如果函数y f(x)在闭区间 a, b上连续在开区间 (a, b)内可导且有 f(a) f(b)那么在 (a, b)内至少在一点使得 f ( ) 0简要证明 (1)如果 f(x)是常函数则 f (x) 0定理的结论显然成立(2)
3、如果 f(x)不是常函数则f(x)在(ab)内至少有一个最大值点或最小值点不妨设有一最大值点(a b)于是0)()(lim)()(xfxfffx0)()(lim)()(xfxfffx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档所以 f (x)=0. 罗尔定理的几何意义二、拉格朗日中值定理拉格朗日中值定理如果函数 f(x)在闭区间 a b上连续在开区间 (a b)内可导那么在 (a b)内至少有
4、一点(a b)使得等式f(b) f(a) f ( )(b a) 成立拉格朗日中值定理的几何意义f ( )abafbf)()(定理的证明引进辅函数令(x) f(x) f(a)abafbf)()(x a)容易验证函数f(x)适合罗尔定理的条件(a)(b) 0(x)在闭区间 a b 上连续在开区间(a b)内可导且(x) f (x)abafbf)()(根据罗尔定理可知在开区间 (a b)内至少有一点使( ) 0即f ( )abafbf)()(0由此得abafbf)()( f ( ) 即f(b) f(a) f ( )(b a)定理证毕f(b) f(a) f ( )(b a)叫做拉格朗日中值公式这个公式
5、对于b0 或x0)或xx x (x0)应用拉格朗日中值公式得f(xx) f(x) f (xx)x (0 1)如果记 f(x)为 y则上式又可写为y f (xx)x (0 1)试与微分d y f (x)x 比较d yf (x)x 是函数增量y 的近似表达式而f (xx)x 是函数增量y 的精确表达式作为拉格朗日中值定理的应用我们证明如下定理定理如果函数f(x)在区间 I 上的导数恒为零那么 f(x)在区间 I 上是一个常数证在区间 I 上任取两点x1x2(x1x2)应用拉格朗日中值定理就得f(x2) f(x1) f ( )(x2 x1) (x1 x2)由假定f ( ) 0所以 f(x2) f(x
6、1) 0即精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档f(x2) f(x1)因为 x1x2是 I 上任意两点所以上面的等式表明f(x)在 I 上的函数值总是相等的这就是说f(x)在区间 I 上是一个常数例 2 证明当 x 0 时xxxx)1ln(1证设 f(x) ln(1x)显然 f(x)在区间 0 x上满足拉格朗日中值定理的条件根据定理就有f(x) f(0) f ( )(x 0) 0 x。由
7、于 f(0) 0 xxf11)(因此上式即为1)1ln(xx又由 0 x有xxxx)1ln(1三、柯西中值定理设曲线弧C 由参数方程)()(xfYxFX(a x b) 表示其中 x 为参数如果曲线C 上除端点外处处具有不垂直于横轴的切线那么在曲线C 上必有一点x使曲线上该点的切线平行于连结曲线端点的弦AB曲线 C 上点 x处的切线的斜率为)()(FfdXdY弦 AB 的斜率为)()()()(aFbFafbf于是)()()()()()(FfaFbFafbf柯西中值定理如果函数 f(x)及 F(x)在闭区间 ab上连续在开区间 (a b)内可导且 F(x)在(a b)内的每一点处均不为零那么在 (
8、a b)内至少有一点使等式)()()()()()(FfaFbFafbf成立显然如果取 F(x) x那么 F(b) F(a) b a F (x) 1因而柯西中值公式就可以写成f(b) f(a) f ( )(b a) (a b)这样就变成了拉格朗日中值公式了精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档 3. 3 泰勒公式对于一些较复杂的函数为了便于研究往往希望用一些简单的函数来近似表达由于用多项式
9、表示的函数只要对自变量进行有限次加、减、乘三种运算便能求出它的函数值因此我们经常用多项式来近似表达函数在微分的应用中已经知道当|x|很小时有如下的近似等式ex1 x ln(1 x) x这些都是用一次多项式来近似表达函数的例子但是这种近似表达式还存在着不足之处首先是精确度不高这所产生的误差仅是关于x 的高阶无穷小其次是用它来作近似计算时不能具体估算出误差大小因此对于精确度要求较高且需要估计误差时候就必须用高次多项式来近似表达函数同时给出误差公式设函数 f(x)在含有 x0的开区间内具有直到(n 1)阶导数现在我们希望做的是找出一个关于(x x0)的 n次多项式pn(x) a 0a 1(x x0)
10、 a 2(x x0) 2 an(x x0)n来近似表达f(x)要求 pn(x)与 f(x)之差是比 (x x0)n高阶的无穷小并给出误差 | f (x)pn (x)|的具体表达式我们自然希望pn(x)与 f(x)在 x0的各阶导数 (直到 (n 1)阶导数 )相等这样就有pn(x) a 0a 1(x x0) a 2(x x0) 2 an(x x0)npn(x) a 12 a 2(x x0)nan(x x0)n 1 pn(x) 2 a 2 3 2a 3(x x0)n (n 1)an(x x0)n 2pn(x) 3!a 34 3 2a 4(x x0) n (n 1)(n 2)an(x x0)n 3
11、pn (n)(x) n! an于是pn(x0) a 0pn(x0) a 1pn(x0) 2! a 2pn(x) 3!a 3pn (n)(x) n! an按要求有f(x0) pn(x0) a0f (x0) pn(x0) a 1f(x0) pn(x0) 2! a 2f(x0) pn(x0) 3!a 3f(n)(x0) pn (n)(x0) n! an从而有a 0f(x0) a 1f (x0)(! 2102xfa)(! 3103xfa)(!10)(xfnann)(!10)(xfkakk(k 0 1 2n)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳
12、- - - - - - - - - -第 4 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档于是就有pn(x) f(x0) f (x0) (x x0)(! 210 xf(x x0) 2 )(!10)(xfnn(x x0)n泰勒中值定理如果函数 f(x)在含有 x0的某个开区间 (a b)内具有直到 (n 1)的阶导数则当 x在(a b)内时f(x)可以表示为 (x x0)的一个 n 次多项式与一个余项Rn(x)之和)()(!1)(! 21)()()(00)(200000 xRxxxfnxxxfxxxfxfxfnnn其中10) 1()(
13、)!1()()(nnnxxnfxR(介于 x0与 x 之间 )这里多项式nnnxxxfnxxxfxxxfxfxp)(!1)(! 21)()()(00)(200000称为函数f(x)按(x x0)的幂展开的n 次近似多项式公式200000)(! 21)()()(xxxfxxxfxfxf)()(!100)(xRxxxfnnnn称为 f(x)按(x x0)的幂展开的n 阶泰勒公式而 Rn(x)的表达式其中10) 1()()!1()()(nnnxxnfxR( 介于 x 与 x0之间 )称为拉格朗日型余项当 n 0 时泰勒公式变成拉格朗日中值公式f(x) f(x0) f ( )(x x0) ( 在 x0
14、与 x 之间)因此泰勒中值定理是拉格朗日中值定理的推广如果对于某个固定的n 当 x 在区间 (a b)内变动时 |f(n 1)(x)|总不超过一个常数M则有估计式1010) 1(|)!1(|)()!1()(| )(|nnnnxxnMxxnfxR及0)(lim0)(0nxnxxxxR可见妆 xx0时误差 |Rn(x)|是比 (x x0)n高阶的无穷小即Rn (x) o(x x0)n在不需要余项的精确表达式时n 阶泰勒公式也可写成200000)(! 21)()()(xxxfxxxfxfxf)()(!1000)(nnnxxoxxxfn当 x00 时的泰勒公式称为麦克劳林公式就是精品资料 - - -
15、欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档)(!)0(! 2)0()0()0()()(2xRxnfxfxffxfnnn或)(!)0(! 2)0()0()0()()(2nnnxoxnfxfxffxf其中1) 1()!1()()(nnnxnfxR由此得近似公式nnxnfxfxffxf!)0(! 2)0()0()0()()(2误差估计式变为1|)!1(| )(|nnxnMxR例 1写出函数f(x) ex的 n 阶麦克劳
16、林公式解因为f(x) f (x) f(x)f( n)(x) ex所以f(0) f (0) f(0)f( n)(0) 1于是12)!1(!1! 211nxnxxnexnxxe(0)并有nxxnxxe!1! 2112这时所产性的误差为|Rn(x)| |)!1(nexxn 1|)!1(|nex| x |n 1当 x 1 时可得 e 的近似式!1! 2111nex其误差为|Rn|0则 f(x)在a b上的图形是凹的(2)若在 (a b)内 f(x)0则 f(x)在a b上的图形是凸的简要证明只证 (1)设21, xxx1x2a b且 x1x2记2210 xxx由拉格朗日中值公式得2)()()()(21
17、101101xxfxxfxfxf011xx2)()()()(12202202xxfxxfxfxf220 xx两式相加并应用拉格朗日中值公式得2)()()(2)()(1212021xxffxfxfxf02)(1212xxf21即)2(2)()(2121xxfxfxf所以 f(x)在a b上的图形是凹的拐点连续曲线 y f(x)上凹弧与凸弧的分界点称为这曲线的拐点确定曲线y f(x)的凹凸区间和拐点的步骤(1)确定函数y f(x)的定义域(2)求出在二阶导数f(x)(3)求使二阶导数为零的点和使二阶导数不存在的点(4)判断或列表判断确定出曲线凹凸区间和拐点注根据具体情况(1) (3)步有时省略例
18、1判断曲线y ln x 的凹凸性解xy121xy因为在函数y ln x 的定义域 (0)内y 0所以曲线y ln x 是凸的精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档例 2判断曲线y x3的凹凸性解y3x 2y6x由 y0得 x 0因为当 x0 时 y 0 时 y 0所以曲线在 0)内为凹的例 3求曲线 y 2x 33x 22x 14 的拐点解y 6x 26x 12)21(12612xxy令
19、 y0得21x因为当21x时 y0当21x时 y0 所以点 (212120)是曲线的拐点例 4求曲线 y 3x 44x31 的拐点及凹、凸的区间解 (1)函数 y 3x 44x31 的定义域为 ()(2)231212xxy)32(3624362xxxxy(3)解方程 y0得01x322x(4)列表判断在区间 (0和2/3)上曲线是凹的在区间 02/3上曲线是凸的点 (0 1)和(2/311/27)是曲线的拐点例 5 问曲线 y x 4是否有拐点?解y4x 3y12x 2当 x0 时 y 0在区间 ()内曲线是凹的因此曲线无拐点例 6 求曲线3xy的拐点解(1)函数的定义域为()(2) 3231
20、xy3292xxy(3)无二阶导数为零的点二阶导数不存在的点为x 0(4)判断当 x0当 x0 时 y 0因此点(0 0)曲线的拐点( 0) 0 (0 2/3) 2/3 (2/3) f(x) 0 0 f(x) 1 11/27 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 21 页 - - - - - - - - - - 资料收集于网络如有侵权请联系网站删除谢谢精品文档 3 5 函数的极值与最大值最小值一、函数的极值及其求法极值的定义定义设函数 f(x)在区间 (a, b)内有定义x0(a,
21、 b)如果在 x0的某一去心邻域内有f(x)f(x0)则称 f(x0)是函数f(x)的一个极大值如果在 x0的某一去心邻域内有f(x) f(x0)则称 f(x0)是函数 f(x)的一个极小值设函数 f(x)在点 x0的某邻域 U(x0)内有定义如果在去心邻域U(x0)内有 f(x) f(x0) (或 f(x) f(x0)则称 f(x0)是函数f(x)的一个极大值(或极小值 )函数的极大值与极小值统称为函数的极值使函数取得极值的点称为极值点函数的极大值和极小值概念是局部性的如果 f(x0)是函数 f(x)的一个极大值那只是就x0附近的一个局部范围来说f(x0)是 f(x)的一个最大值如果就 f(
22、x)的整个定义域来说f(x0)不一定是最大值关于极小值也类似极值与水平切线的关系在函数取得极值处曲线上的切线是水平的但曲线上有水平切线的地方函数不一定取得极值定理 1 (必要条件 )设函数 f(x)在点 x0处可导且在 x0处取得极值那么这函数在x0处的导数为零即 f (x0) 0证为确定起见假定f(x0)是极大值 (极小值的情形可类似地证明)根据极大值的定义在x0的某个去心邻域内对于任何点xf(x) f(x0)均成立于是当 xx0时0)()(00 xxxfxf因此f (x0)0)()(lim000 xxxfxfxx当 xx0时0)()(00 xxxfxf因此0)()(lim)(0000 xx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 2022 同济 第六 教案 WORD 03 中值 定理 导数 应用
限制150内