三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结.doc
《三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结.doc》由会员分享,可在线阅读,更多相关《三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)ABD AEC (2)+BOC=180 (3)OA平分BOC变形: 例1.如图在直线的同一侧作两个等边三角形与,连结与,证明(1)(2)(3) 与之间的夹角为(4)(5)(6) 平分(7)变式精练1:如图两个等边三角形与,连结与,证明(1)(2)(3) 与之间的夹角为(4) 与的交点设为,平分变式精练2:如图两个等边三角形与,连结与,证明(1)(2)(3) 与之间的夹角为(4) 与的交点设为,平分例2:如图,两个正方形与,连结,二者相交于点问:(1)是否成立?(
2、2) 是否与相等?(3) 与之间的夹角为多少度?(4) 是否平分?例3:如图两个等腰直角三角形与,连结,二者相交于点问:(1)是否成立?(2)是否与相等?(3)与之间的夹角为多少度?(4)是否平分?例4:两个等腰三角形与,其中,连结与,问:(1)是否成立?(2)是否与相等?(3)与之间的夹角为多少度?(4)是否平分?二、倍长与中点有关的线段倍长中线类考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。【例1】 已知:中,是中线求证:【练1】在中,则边上的中线的长的取值范围是什么?【练2】如图所示,在的边上取两点、,使,
3、连接、,求证:【例2】 如图,已知在中,是边上的中线,是上一点,延长交于,求证:【练1】如图,已知在中,是边上的中线,是上一点,且,延长交于,求证:【练2】如图,在中,交于点,点是中点,交的延长线于点,交于点,若,求证:为的角平分线【练3】如图所示,已知中,平分,、分别在、上,求证:【例3】 已知为的中线,的平分线分别交于、交于求证:【练1】在中,是斜边的中点,、分别在边、上,满足若,则线段的长度为_【练2】在中,点为的中点,点、分别为、上的点,且(1)若,以线段、为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?(2)如果,求证【例4】 如图所示,在中,延长到,使,
4、为的中点,连接、,求证【练1】已知中,为的延长线,且,为的边上的中线求证:全等之截长补短:人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方1. 如图所示,中,AD平分交BC于D。求证:AB=AC+CD。如图所示,在中,的角平分线AD、CE相交于点O。求证:AE+CD=AC。2. 如图所示,已知,P为BN上一点,且于D,AB+BC=2BD,求证:。3. 如图所示,在中,AB=AC,CE垂直于BD的延长线于E。求证:BD=2CE。5如图所示,在中,AD为的平分线,=30,于E点,求证:AC-AB=2B
5、E。6.如图所示,已知/CD,的平分线恰好交于AD上一点E,求证:BC=AB+CD。7.如图,E是的平分线上一点,垂足为C、D。求证:(1)OC=OD; (2)DF=CF。专心-专注-专业三、截长补短问题1:垂直平分线(性质)定理是_问题2:角平分线(性质)定理是_问题3:等腰三角形的两个底角_,简称_;如果一个三角形有两个角相等,那么它们所对的边也_,简称_问题4:当见到线段的_考虑截长补短,构造全等或等腰转移_、转移_,然后和_重新组合解决问题三角形全等之截长补短(一)一、单选题(共4道,每道25分)1.已知,如图,BM平分ABC,P为BM上一点,PDBC于点D,BD=AB+CD求证:BA
6、P+BCP=180请你仔细观察下列序号所代表的内容:;1=2;A=BEP;AP=PE;以上空缺处依次所填最恰当的是( )A. B. C. D. 2.已知,如图,BM平分ABC,点P为BM上一点,PDBC于点D,BD=AB+DC求证:BAP+BCP=180请你仔细观察下列序号所代表的内容:延长BA,过点P作PEBA于点E;延长BA到E,使AE=DC,连接PE;延长BA到E,使DC=AE;以上空缺处依次所填最恰当的是( )A. B. C. D. 3.已知,如图,在五边形ABCDE中,AB=AE,AD平分CDE,BAE=2CAD,求证:BC+DE=CD请你仔细观察下列序号所代表的内容:在CD上截取C
7、F=CB,连接AF;在DC上截取DF=DE,连接AF;在DC上截取DF=DE;AE=AF;AF=AE,4=3;4=3;以上空缺处依次所填最恰当的是( )A. B. C. D. 4.已知,如图,在五边形ABCDE中,AB=AE,BAE=2CAD,ABC+AED=180,求证:BC+DE=CD请你仔细观察下列序号所代表的内容:延长DE到F,使EF=BC,连接AF;延长DE到F,使BC=EF;延长DE到F,连接AF;以上空缺处依次所填最恰当的是( )A. B. C. D. 四、三角形全等旋转与截长补短专题问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件)问题二:旋转都有哪些模型?【例1
8、】如图,P是正ABC内的一点,若将PBC绕点B旋转到PBA ,则PBP的度数是( ) A45B60 C90 D120 【例2】如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BDCF并求出DOH的度数。【例3】如图,正方形ABCD中,FADFAE 。求证:BEDFAE。1题干中出现对图形的旋转现成的全等2图形中隐藏着旋转位置关系的全等形找到并利用3题干中没提到旋转,图形中也没有旋转关系存在通过作辅助线构造旋转!【例4】已知:如图:正方形ABCD中,MAN45,MAN的两边分别交CB、DC于点M、N。求证:BMDNMN。【例5】如图,正方形ABCD中,EAF45,连接对角线B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 全等 手拉手 模型 中线 截长补短 旋转 寻找 方法 归纳 总结
限制150内