三角恒等变换知识点归纳.docx
《三角恒等变换知识点归纳.docx》由会员分享,可在线阅读,更多相关《三角恒等变换知识点归纳.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式; (); ()25、二倍角的正弦、余弦和正切公式:升幂公式降幂公式, 26、 27、 (后两个不用判断符号,更加好用)28、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 形式。,其中29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的
2、差异,使问题获解,对角的变形如:是的二倍;是的二倍;是的二倍;是的二倍; ;问: ; ;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常用降幂公式有: ; 。降幂并非绝对,有时需要升幂,如对无理式常用升幂化为有理式,常用升幂公式有: ; ;(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。 如:
3、; ; ; ; ; = ; = ;(其中 ;) ; ;(6)三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:见切化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,特殊值与特殊角的三角函数互化。如: ; 。 基础练习一 选择题1已知且为锐角,则的值是().2设则的范围是( )A B. C. D、3( )A B、 C. D.4.若,若,则( )A. B. C. D.5.设,则的值是( )A. B. C. D.6.在中,已知则的值是( )A. B. C.或 D.7.已知则的值等于( )A. B. C. D.8.使函数为奇函数,且在区间上为减函数的的一个值为().
4、9.已知是第三象限角,且满足,那么的值等于()10.已知则等于()11.若则的终边在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知,则等于( )A. B. C. D.13函数有( )A.最大值0,最小值 B.最大值5,最小值C.最大值5,最小值 D.最大值,最小值 14.函数的最大值为( ) A. B. C. D.15.函数的最大值是( ) A B. C. D. 16.函数ysin4xcos2x的最小正周期为( )A B C D217.的值是( )A. B. C. D.18.若则的值为( )A. B. C. D.19.中,若,则一定是( )A.直角三角形 B.等腰三角形
5、 C.等腰直角三角形 D.等边三角形20.函数的最小正周期为( )A. B. C. D.二 填空题1.已知则 2.函数的最大值等于 3.已知则 4.若则的取值范围是 5.函数的最小正周期是_6.在中,则 7.在三角形ABC中,若则= 8.若则 9.已知那么 10.在中,已知则 11.函数的最小正周期是_12.已知,则 13. 14.在中,那么的值为 15.函数(为锐角)的值域是 16.若,且则 17.化简 18.在中,则的形状是 19.设,若且,则的范围是 20.若的值域是,则此函数的表达式是 三 解答题1.已知,求的值2.已知且求的值3.已知(1)化简;(2)求使的最小正角 4.某工人要从一
6、块圆心角为,半径为的扇形木板中割出一块一边在半径上的内接矩形桌面,求割出的矩形桌面的最大面积高考试题库w。w-w*高考试题库高考试题库w。w-w*高考试题库5.已知(1)求的值;(2)求的值6.已知求的值7.求证: 8.求证:高考试题库w。w-w*高考试题库高考试题库w。w-w*高考试题库9.已知求的值10.在中,求证: 高考试题库w。w-w*高考试题库高考试题库强化练习一 选择题1cos45cos15sin45sin15()A. B. C. D.答案B解析cos45cos15sin45sin15cos(4515)cos30.2cos等于()A.cos B.cosC.cossin D.coss
7、in答案C解析coscoscossinsincossin.3cos165等于()A. B.C D答案C解析cos165cos(18015)cos(4530)(cos45cos30sin45sin30).4满足coscossinsin的一组,的值是()A, B,C, D,答案B解析由条件coscossinsin得coscossinsin,即cos(),满足条件5cos39cos9sin39sin9等于()A. B. C D答案B解析cos39cos9sin39sin9cos(399)cos30.6cos555的值为()A. BC. D.答案B解析cos555cos(360195)cos(1801
8、5)cos15cos(4530)(cos45cos30sin45sin30).7(福建高考)计算sin43cos13cos43sin13的结果等于()A. B. C. D.答案A解析sin43cos13cos43sin13sin(4313)sin30.选A.8(新课标高考)若cos,是第三象限的角,则sin()等于()A B. C D.答案A解析sin()(sincos)().9在ABC中,sinAsinB0,则cos(AB)0,所以cos(C)0,即cosC0,所以C是钝角10(20112012杭州高一检测)下列命题中不正确的是()A存在这样的和的值,使得cos()coscossinsinB
9、不存在无穷多个和的值,使得cos()coscossinsinC对于任意的和,都有cos()coscossinsinD不存在这样的和的值,使得cos()coscossinsin答案B解析若sin或sin有一个为0,即k(kZ)或k(kZ)则有cos()coscos,故A、C、D正确,选B.11下列等式成立的是()Acos80cos20sin80sin20Bsin13cos17cos13sin17Csin70cos25sin25sin20Dsin140cos20sin50sin20答案D12cos的值等于()A. B.C. D.答案C解析coscoscos.13已知tan4,tan()3,则tan
10、()()A. BC. D答案B解析由已知得tan4,tan3,tan().14tan20tan40tan20tan40的值为()A B. C3 D.答案B解析原式tan(2040)(1tan20tan40)tan20tan40(1tan20tan40)tan20tan40.15.的值为()A. B C. D答案C解析tan(4515)tan60.16已知为锐角,且tan()3,tan()2,则角等于()A. B. C. D.答案C解析tan2tan()()1,2k(kZ),(kZ)又为锐角,.17(2012全国高考重庆卷)设tan、tan是方程x23x20的两个根,则tan()的值为()A3
11、B1 C1 D3答案A解析tantan3,tantan2,则tan()318若、(0,)且tan,tan,则tan()()A B1 C. D.答案C解析tan().19已知sin,则cos的值为()A. BCD.答案D解析sin,cos12sin212()2.20若cos,且(0,),则cossin的值为()A. B.C. D.答案B解析cos,且(0,),(0,)cos.sincossin.21设56,cosa,那么sin等于()A BC D答案D解析若56,则,则sin.22ysinxcosxsin2x可化为()A.sin B.sinCsin D2sin1答案A解析ysin2xsin2xc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角 恒等 变换 知识点 归纳
限制150内