勾股定理题型总结(共15页).doc
《勾股定理题型总结(共15页).doc》由会员分享,可在线阅读,更多相关《勾股定理题型总结(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上勾股定理知识技能和题型归纳(一)知识技能一、本章知识内容归纳1、勾股定理揭示的是平面几何图形本身所蕴含的代数关系。(1)重视勾股定理的叙述形式:直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这两种形式来看,有“形的勾股定理”和“数的勾股定理”之分。(2)定理的作用:已知直角三角形的两边,求第三边。证明三角形中的某些线段的平方关系。作长为的线段。(利用勾股定理探究长度为的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示,加深对无理数概念的认识。)2、勾股定理的逆
2、定理(1)勾股定理的逆定理的证明方法,通过构造一个三角形与直角三角形全等,达到证明某个角为直角的目的。(2)逆定理的作用:判定一个三角形是否为直角三角形。(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。要注意叙述及书写格式。运用勾股定理的逆定理的步骤如下:首先确定最大的边(如c)验证与是否具有相等关系:若,则ABC是以C为90的直角三角形。若,则ABC不是直角三角形。补充知识:当时,则是锐角三角形;当时,则是钝角三角形。(4)通过总结归纳,记住一些常用的勾股数。如:3,4,5;5,12,13;6,8,10;8,15,17;9,40,41;以及这些数组的倍数组成的数组。勾股数
3、组的一般规律: 丢番图发现的:式子的正整数) 毕达哥拉斯发现的:(的整数) 柏拉图发现的:(的整数)3、勾股定理与勾股定理逆定理的关系(1)注意分清应用条件:勾股定理是由直角得到三条边的关系,勾股定理逆定理则是由边的关系来判断一个角是否为直角。(2)根据课标要求,对原命题、逆命题及命题之间的关系只要求根据例子了解即可,不必专门训练.二、本章解题技能归纳1、直角三角形的性质与判定小结(1)直角三角形的性质:角的关系:直角三角形两锐角互余。边的关系:直角三角形斜边大于直角边。直角三角形两直角边的平方和等于斜边的平方。直角三角形斜边的中线等于斜边的一半。边角关系:直角三角形中,30的角所对的直角边等
4、于斜边的一半。双垂图:双垂图中的线段关系。(2)直角三角形的判定:有一个角是直角的三角形是直角三角形。有两个角互余的三角形是直角三角形。两边的平方和等于第三边(最长的边)的平方的三角形是直角三角形。2、已知直角三角形的两边长,会求第三边长设直角三角形的两直角边为a,b,斜边长为c,由勾股定理知道:。变形得:,因此已知直角三角形的任意两边,利用勾股定理可求出第三条边。3、当直角三角形中含有30与45角时,已知一边,会求其它的边(1)含有30的直角三角形的三边的比为:1:。(2)含有45的直角三角形的三边的比为:。(3)等边三角形的边长为,则高为,面积为。三、阅读与思考“希波克拉底月牙形”(1)
5、如左图:C=90,图中有阴影的三个半圆的面积S1,S2,S3有什么关系? 答: (2)如图:C=90,ABC的面积为20,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分(即“希波克拉底月牙形”)的面积为 勾股定理知识技能和题型归纳(二)题型一、基础练习(要求熟练掌握)1、在ABC中,a,b,c为三边长.(1)当A=90时,三边关系 .(2)当C=90时,三边关系 .(3)当时, =90. 2、如图,在RtABC中,C=90,BC=a,AC=b,AB=c.(1) 已知a=5,b=12,则c= ;(2) 已知b=6,c=10, 则a= (3) 已知a=2,c=,则b= ;(4)
6、已知a=15,b=20, 则ABC的周长= ;(5) 已知a=2, c =2.5, 则ABC的面积= ;(6) 已知a: c =3:5, a+ c =32, 则b= ;(7) 已知c =10, a: b=3:4, 则a= , b= ,斜边上的高= 。3、已知ABC是直角三角形,AC=3,BC=5, 求AB的长。4、在ABC中,C=90,AB=20。(1)若B=45,求BC、AC。(2)若A=60,求BC、AC。5、求下列图中未知数x、y、z的值: x= ; y= ; z= ; 二、与其它章节知识的联系6、在ABC的三边 ,且,判断ABC的形状。7、若ABC的三边满足条件,判断ABC的形状。8、
7、ABC的三边,满足边的长是 的解,求ABC中最大角的度数。9、用本章学过的知识判断直线与的位置关系,说明理由。10、在B港有甲、乙两艘渔船,若甲船沿北偏东60方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?11、为美化环境,计划在某小区内用30平方米的草皮铺设一边长为10米的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。12、如图,铁路上A、B两站(视为直线上两点)相距25千米,C、D为两个村庄(视为两个点),DAAB于A,CBAB于B,DA=15 千米,CB=10千米,现
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 题型 总结 15
限制150内