五年级奥数-第十二讲.工程问题之牛吃草.教师版(共10页).doc
《五年级奥数-第十二讲.工程问题之牛吃草.教师版(共10页).doc》由会员分享,可在线阅读,更多相关《五年级奥数-第十二讲.工程问题之牛吃草.教师版(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十二讲 工程问题之牛吃草问题教学目标:1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系知识点拨:英国科学家牛顿在他的普通算术一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长后人把这类问题称为牛吃草问题或叫做“牛顿问题”“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定“牛吃草”问题是小学应用题中的难点解“牛吃草”问题的主要依据: 草的每天生长量不变; 每头牛每天的食草量不变
2、; 草的总量草场原有的草量新生的草量,其中草场原有的草量是一个固定值 新生的草量每天生长量天数同一片牧场中的“牛吃草”问题,一般的解法可总结为:设定1头牛1天吃草量为“1”;草的生长速度(对应牛的头数较多天数对应牛的头数较少天数)(较多天数较少天数);原来的草量对应牛的头数吃的天数草的生长速度吃的天数;吃的天数原来的草量(牛的头数草的生长速度);牛的头数原来的草量吃的天数草的生长速度“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题例题精讲:板块一、一块地的“牛吃草问题”【例 1】 青青一牧场,牧草喂牛羊;
3、放牛二十七,六周全吃光。 改养廿三只,九周走他方; 若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。“廿”即二十之意。)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【解析】 设1头牛1天的吃草量为“1”,27头牛吃6周共吃了份;23头牛吃9周共吃了份第二种吃法比第一种吃法多吃了份草,这45份草是牧场的草周生长出来的,所以每周生长的草量为,那么原有草量为:供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要(周)可将原有牧草吃完,即它可供21头牛吃12周【巩固】 牧场
4、上长满牧草,每天牧草都匀速生长这片牧场可供10头牛吃20天,可供15头牛吃10天供25头牛可吃几天?【解析】 设1头牛1天的吃草量为“1”,10头牛吃20天共吃了份;15头牛吃10天共吃了份第一种吃法比第二种吃法多吃了份草,这50份草是牧场的草天生长出来的,所以每天生长的草量为,那么原有草量为:供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要(天)可将原有牧草吃完,即它可供25头牛吃5天【例 2】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【解析】 设1头牛1周的吃草量为“1”,草的生长速度为,原有草量为,可供(头)牛吃18周【巩
5、固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天那么它可供几头牛吃20天?【解析】 设1头牛1天的吃草量为“1”,那么天生长的草量为,所以每天生长的草量为;原有草量为:20天里,草场共提供草,可以让头牛吃20天【巩固】 (2007年湖北省“创新杯”)牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头牛96天可以把草吃完【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为,牧场原有草量为,要吃96天,需要(头)牛【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完假定草的生长量每日相等,每头牛每日的吃草量也相同
6、,那么放多少头牛6天可以把草吃完?【解析】 设1头牛1天的吃草量为1个单位,则每天生长的草量为:,原有草量为:,(头)【巩固】 林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)【解析】 设一只猴子一周吃的野果为“”,则野果的生长速度是,原有的野果为,如果要4周吃光野果,则需有只猴子一起吃【例 3】 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天照此计算,可以供多少头牛吃10天?【解析】 设1头牛1天的吃草量为“1”,
7、那么每天自然减少的草量为:,原有草量为:;10天吃完需要牛的头数是:(头)【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【解析】 设1头牛1天吃的草为“1”。牧场上的草每天自然减少 ; 原来牧场有草,12天吃完需要牛的头数是:(头)或(头)。【例 4】 由于天气逐渐变冷,牧场上的草每天以均匀的速度减少经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天那么,可供11头牛吃几天?【解析】 设1头牛1天的吃草量为“1”,天自然减少的草量为,原有草量为:若有11头牛来吃草,每天草减
8、少;所以可供11头牛吃(天)【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【解析】 设1头牛1天吃的草为“1”。牧场上的草每天自然减少 原来牧场有草可供10头牛吃的天数是:(天)。【例 5】 一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【解析】 设1头牛1天的吃草量为“1”,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天那么每天生
9、长的草量为,原有草量为:10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天【巩固】 (年希望杯六年级二试试题)有一片草场,草每天的生长速度相同。若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。那么,17头牛和20只羊多少天可将草吃完?【解析】 “4只羊一天的吃草量相当于1头牛一天的吃草量”,所以可以设一只羊一天的食量为1,那么14头牛30天吃了单位草量,而70只羊16天吃了单位草量,所以草场在每天内增
10、加了草量,原来的草量为草量,所以如果安排17头牛和20只羊,即每天食草88草量,经过天,可将草吃完。【巩固】 一片牧草,每天生长的速度相同。现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?【解析】 设1头牛1天的吃草量为“1”,只羊的吃草量等于头牛的吃草量,只羊的吃草量等于头牛的吃草量,所以草的生长速度为,原有草量为,12头牛与88只羊一起吃可以吃(天)【例 6】 有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完问:原来有多少头牛吃
11、草(草均匀生长)?【解析】 设1头牛1天的吃草量为“1”,那么每天生长的草量为,原有草量为:现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完,如果不卖掉这4头牛,那么原有草量需增加才能恰好供这些牛吃8天,所以这些牛的头数为(头)【巩固】 一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【解析】 设1头牛1天的吃草量为“1”,那么每天生长的草量为,原有草量为:如果4头牛吃30天,那么将会吃去30天的新生长草量以及90原有草量,此时原有草量还剩,而牛的头数变为6,现在就相当于:“原有草量30,每天生长草量1,那么6头牛吃
12、几天可将它吃完?”易得答案为:(天)【例 7】 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽已知牛和羊每天的吃草量的和等于马每天的吃草量现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【解析】 设1匹马1天吃草量为“1”,根据题意,有:15天马和牛吃草量原有草量天新生长草量20天马和羊吃草量原有草量天新生长草量30天牛和羊(等于马)吃草量原有草量天新生长草量由可得:30天牛吃草量原有草量,所以:牛每天吃草量原有草量;由可知,30天羊吃草量天新生长草量,所以:羊每天吃草量每天新生长草量;设马每天吃的草为份将上述结果带
13、入得:原有草量,所以牛每天吃草量这样如果同时放牧牛、羊、马,可以让羊去吃新生长的草,牛和马吃原有的草,可以吃:(天)【巩固】 现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【解析】 牛、马45天吃了 原有天新长的草 牛、马90天吃了2原有天新长的草 马、羊60天吃了 原有天新长的草 牛、羊90天吃了 原有天新长的草 马 90天吃了 原有天新长的草 所以,由、知,牛吃了90天,吃了原有的草;再结合知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的
14、草 所以,知马60天吃完原有的草,知牛90天吃完原有的草 现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草. 所需时间为天. 所以,牛、羊、马一起吃,需36天模块二、“牛吃草问题”的变形【例 8】 一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?【解析】 设1人1小时淘出的水量是“1”,淘水速度是,原有水量,要求2小时淘完,要安排人淘水【巩固】 一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把
15、水淘完?【解析】 设1人1分钟淘出的水量是“1”,分钟的进水量为,所以每分钟的进水量为,那么原有水量为:5人淘水需要(分钟)把水淘完【例 9】 假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年。为了使人类能够不断繁衍,地球上最多能养活多少人?【解析】 亿人。【例 10】 画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队。求第一个观众到达的时间。【解析】 设每分钟1个入口进入的人数为1个单位。 8:30到9:00 共30
16、分钟 3个入口共进入。8:30到8:45 共15分钟 5个入口共进入,15分钟到来的人数 ,每分钟到来。8:30以前原有人。 所以应排了(分钟),即第一个来人在7:30【巩固】 画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队求第一个观众到达的时间【解析】 如果把入场口看作为“牛”,开门前原有的观众为“原有草量”,每分钟来的观众为“草的增长速度”,那么本题就是一个“牛吃草”问题设每一个入场口每分钟通过“1”份人,那么4分钟来的人为,即1分钟来的人为,原有的人为:这些人来到画展,所用时
17、间为(分)所以第一个观众到达的时间为8点15分点评:从表面上看这个问题与“牛吃草”问题相离很远,但仔细体会,题目中每分钟来的观众一样多,类似于“草的生长速度”,入场口的数量类似于“牛”的数量,问题就变成“牛吃草”问题了解决一个问题的方法往往能解决一类问题,关键在于是否掌握了问题的实质【例 11】 在地铁车站中,从站台到地面有一架向上的自动扶梯小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面从站台到地面有 级台阶【解析】 本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯小强乘坐扶
18、梯时,如果每秒向上迈一级台阶,那么他走过20秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面问:从站台到地面有多少级台阶?”采用牛吃草问题的方法,电梯秒内所走的阶数等于小强多走的阶数:阶,电梯的速度为阶/秒,扶梯长度为(阶)。【巩固】 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。问:该扶梯共有多少级梯级?【解析】 本题与牛吃草问题类似,其中扶梯的梯级总数相当于原有草量;而自动扶梯运行的速度则相当于草的增长速度。并且上楼的速度要分成两部分一部分是孩子自己的速度,另一部分是自动扶梯的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 第十二 工程 问题 吃草 教师版 10
限制150内