历年全国理科数学高考试题立体几何部分精选(共11页).doc
《历年全国理科数学高考试题立体几何部分精选(共11页).doc》由会员分享,可在线阅读,更多相关《历年全国理科数学高考试题立体几何部分精选(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上(一)1.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。3.如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB=60,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。(一)1.D 2. 3. 解:()因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD. 故 PABD()如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,。设
2、平面PAB的法向量为n=(x,y,z),则 即 因此可取n=设平面PBC的法向量为m,则 可取m=(0,-1,) 故二面角A-PB-C的余弦值为 (二)1. 正方体ABCD-中,B与平面AC所成角的余弦值为A B C D2. 已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为俩切点,那么的最小值为(A) (B) (C) (D)3. 已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A) (B) (C) (D) 4. 如图,四棱锥S-ABCD中,SD底面ABCD,AB/DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面ED
3、C平面SBC .()证明:SE=2EB;()求二面角A-DE-C的大小 .(二)1. D 2. D 3. B4. 解法一: ()连接BD,取DC的中点G,连接BG, 由此知 即为直角三角形,故. 又,所以,.作,故与平面SBC内的两条相交直线BK、BC都垂直DE平面SBC,DEEC,DESB所以,SE=2EB() 由知.故为等腰三角形.取中点F,连接,则.连接,则.所以,是二面角的平面角.连接AG,AG=,所以,二面角的大小为120.解法二: 以D为坐标原点,射线为轴的正半轴,建立如图所示的直角坐标系,设A(1,0,0),则B(1,1,0),C(0,2,0),S(0,0,2)()设平面SBC的
4、法向量为n=(a, b, c)由,得故2b-2c=0,-a+b=0令a=1,则b=c,c=1,n=(1,1,1)又设 ,则设平面CDE的法向量m=(x,y,z)由,得 ,故 .令,则.由平面DEC平面SBC得mn,故SE=2EB()由()知,取DE的中点F,则,故,由此得又,故,由此得,向量与的夹角等于二面角的平面角于是 所以,二面角的大小为(三)1. 已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( )(A) (B) (C) (D) 2. 已知二面角为 ,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为( )(A)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年 全国 理科 数学 高考 试题 立体几何 部分 精选 11
限制150内