专题二次函数应用题(共11页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《专题二次函数应用题(共11页).doc》由会员分享,可在线阅读,更多相关《专题二次函数应用题(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专题二次函数应用题一、引言 数学源于实际,数学的发展主要依赖于生产实践。从数学应用的角度来处理数学、阐释数学、呈现数学,可以提高理论知识的可利用水平,增强理论知识可辨别性程度。数学概念多是由实际问题抽象而来的,大多数都有实际背景。尽管应用的广泛性是数学的一大特征,但常常被数学教材的严谨性和抽象性所掩盖,导致学生应用数学的意识薄弱,应用能力不强。数学的“语言”供世界各民族所共有,是迄今为止惟一的世界通用的语言,是一种科学的语言。科学数学化,社会数学化的过程,乃是数学语言的运用过程;科学成果也是用数学语言表述的,正如伽利略所说“自然界的伟大的书是用数学语言写成的”。从而端
2、正并加深对数学的认识,激发我们应用数学的自觉性、主动性。 二、例题 例1、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?简解:(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2+3.5。又由于抛物线过(1.5,3.05),于是求得a=-0.2。抛物线的解析式为y=-0.2x2+3.5。(2)当x=-2
3、.5时,y=2.25。球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。 评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。解这类问题一般分为以下四个步骤:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式;当已知抛物线与x轴的两个交点坐标分别为(x1,0)、(x2,
4、0)时,可用双根式y=a(x-x1)(x-x2)求其解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。 例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数 (1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 解:(1)依题意设y=kx+b,则有 所以y=-30x+960(16x32) (2)每月获得利润P=(-30x+960)(x-
5、16) =30(-x+32)(x-16) =30(+48x-512) =-30+1920 所以当x=24时,P有最大值,最大值为1920 答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元 注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一元二次函数求最值 例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5) (1)求这个二次函数的解析式; (2)该男
6、同学把铅球推出去多远?(精确到0.01米, ) 解:(1) 设二次函数的解析式为 ,顶点坐标为 (6,5) A(0,2)在抛物线上 (2) 当时, (不合题意,舍去) (米) 答:该同学把铅球抛出13.75米. 例4、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 二次 函数 应用题 11
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内