大学物理上册课后习题答案(共71页).doc
《大学物理上册课后习题答案(共71页).doc》由会员分享,可在线阅读,更多相关《大学物理上册课后习题答案(共71页).doc(71页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上习题解答习题一1-1 与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.有(式中叫做单位矢),则式中就是速度径向上的分量,不同如题1-1图所示. 题1-1图 (3)表示加速度的模,即,是加速度在切向上的分量.有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r,然后根据 =,及而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即
2、 =及= 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计(1)以时间
3、为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算0 s时刻到4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算4 s 时质点的速度;(5)计算0s 到4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) (2)将,代入上式即有 (3) (4) 则 (5) (6) 这说明该点只有方向的加速度,且为恒量。1-4 在离水面高h米的岸上,有人用绳子拉船靠岸,船在离岸S处,如题1-4图所示当人以(
4、m)的速率收绳时,试求船运动的速度和加速度的大小 图1-4解: 设人到船之间绳的长度为,此时绳与水面成角,由图可知 将上式对时间求导,得 题1-4图根据速度的定义,并注意到,是随减少的, 即 或 将再对求导,即得船的加速度1-5 质点沿轴运动,其加速度和位置的关系为 2+6,的单位为,的单位为 m. 质点在0处,速度为10,试求质点在任何坐标处的速度值解: 分离变量: 两边积分得由题知,时,, 1-6 已知一质点作直线运动,其加速度为 4+3 ,开始运动时,5 m, =0,求该质点在10s 时的速度和位置 解: 分离变量,得 积分,得 由题知,, ,故 又因为 分离变量, 积分得 由题知 ,
5、,故 所以时1-7 一质点沿半径为1 m 的圆周运动,运动方程为 =2+3,式中以弧度计,以秒计,求:(1) 2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45角时,其角位移是多少? 解: (1)时, (2)当加速度方向与半径成角时,有即 亦即 则解得 于是角位移为1-8 质点沿半径为的圆周按的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2) 为何值时,加速度在数值上等于解:(1) 则 加速度与半径的夹角为(2)由题意应有即 当时,1-9 半径为的轮子,以匀速沿水平线向前滚动:(1)证明轮缘上任意点的运动方程为,式中/是轮子滚动的角速度,当
6、与水平线接触的瞬间开始计时此时所在的位置为原点,轮子前进方向为轴正方向;(2)求点速度和加速度的分量表示式解:依题意作出下图,由图可知题1-9图(1) (2)1-10 以初速度20抛出一小球,抛出方向与水平面成幔60的夹角,求:(1)球轨道最高点的曲率半径;(2)落地处的曲率半径(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示题1-10图(1)在最高点,又 (2)在落地点,,而 1-11 飞轮半径为0.4 m,自静止启动,其角加速度为=0.2 rad,求2s时边缘上各点的速度、法向加速度、切向加速度和合加速度解:当时, 则1-12 如题1-12图,物体以相
7、对的速度沿斜面滑动,为纵坐标,开始时在斜面顶端高为处,物体以匀速向右运动,求物滑到地面时的速度解:当滑至斜面底时,则,物运动过程中又受到的牵连运动影响,因此,对地的速度为题1-12图1-13 一船以速率30kmh-1沿直线向东行驶,另一小艇在其前方以速率40kmh-1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何? 解:(1)大船看小艇,则有,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 方向北偏西 (2)小船看大船,则有,依题意作出速度矢量图如题1-13图(b),同上法,得方向南偏东1-14 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m的甲板上,篷高
8、4 m 但当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m ,如雨滴的速度大小为8 ms-1,求轮船的速率解: 依题意作出矢量图如题1-14所示题1-14图 由图中比例关系可知 习题二2-1因绳不可伸长,故滑轮两边绳子的加速度均为a1,其对于m2则为牵连加速度,又知m2对绳子的相对加速度为a,故m2对地加速度,由图(b)可知,为a2=a1-a 又因绳的质量不计,所以圆柱体受到的摩擦力f在数值上等于绳的张力T,由牛顿定律,有m1g-T=m1a1 T-m2g=m2a2 联立、式,得讨论 (1)若a=0,则a1=a2表示柱体与绳之间无相对滑动(2)若a=2g,则T=f=0,表示柱体与绳之间无任何
9、作用力,此时m1,m2均作自由落体运动题2-1图2-2以梯子为对象,其受力图如图(b)所示,则在竖直方向上,NB-mg=0 又因梯无转动,以B点为转动点,设梯子长为l,则NAlsin-mgcos=0 在水平方向因其有加速度a,故有f+NA=ma 题2-2图式中f为梯子受到的摩擦力,其方向有两种可能,即 f=0mg 联立、式得2-3 (1) 于是质点在2s时的速度(2)2-4 (1)分离变量,得即 (2) (3)质点停止运动时速度为零,即t,故有 (4)当t=时,其速度为即速度减至v0的.2-5分别以m1,m2为研究对象,其受力图如图(b)所示(1)设m2相对滑轮(即升降机)的加速度为a,则m2
10、对地加速度a2=a-a;因绳不可伸长,故m1对滑轮的加速度亦为a,又m1在水平方向上没有受牵连运动的影响,所以m1在水平方向对地加速度亦为a,由牛顿定律,有m2g-T=m2(a-a)T=m1a题2-5图联立,解得a=g方向向下(2) m2对地加速度为a2=a-a= 方向向上m1在水面方向有相对加速度,竖直方向有牵连加速度,即a绝=a相+a牵=arctan=arctan=26.6,左偏上2-6依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y轴对称性,故末速度与x轴夹角亦为30,则动量的增量为p=mv-mv0由
11、矢量图知,动量增量大小为mv0,方向竖直向下2-7由题知,小球落地时间为0.5s因小球为平抛运动,故小球落地的瞬时向下的速度大小为v1=gt=0.5g,小球上跳速度的大小亦为v2=0.5g设向上为y轴正向,则动量的增量p=mv2-mv1 方向竖直向上,大小 p=mv2-(-mv1)=mg碰撞过程中动量不守恒这是因为在碰撞过程中,小球受到地面给予的冲力作用另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒2-8 (1)若物体原来静止,则p1= i kgms-1,沿x轴正向,若物体原来具有-6 ms-1初速,则于是,同理,v2=v1,I2=I1这说明,只要力函数不变,作用时间相
12、同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理(2)同上理,两种情况中的作用时间相同,即亦即t2+10t-200=0解得t=10 s,(t=-20 s舍去)2-9 质点的动量为p=mv=m(-asinti+bcostj)将t=0和t=分别代入上式,得p1=mbj,p2=-mai,则动量的增量亦即质点所受外力的冲量为I=p=p2-p1=-m(ai+bj)2-10 (1)由题意,子弹到枪口时,有F=(a-bt)=0,得t= (2)子弹所受的冲量将t=代入,得(3)由动量定理可求得子弹的质量2-11设一块为m1,则另一块为m2,m1=km
13、2及m1+m2=m于是得 又设m1的速度为v1,m2的速度为v2,则有 mv=m1v1+m2v2 联立、解得v2=(k+1)v-kv1 将代入,并整理得于是有将其代入式,有又,题述爆炸后,两弹片仍沿原方向飞行,故只能取证毕2-12 (1)由题知,F合为恒力, A合=Fr=(7i-6j)(-3i+4j+16k) =-21-24=-45 J(2) (3)由动能定理,Ek=A=-45 J2-13 以木板上界面为坐标原点,向内为y坐标正向,如题2-13图,则铁钉所受阻力为题2-13图f=-ky第一锤外力的功为A1 式中f是铁锤作用于钉上的力,f是木板作用于钉上的力,在dt0时,f=-f设第二锤外力的功
14、为A2,则同理,有 由题意,有 即所以,于是钉子第二次能进入的深度为y=y2-y1=-1=0.414 cm2-14 方向与位矢r的方向相反,即指向力心2-15 弹簧A、B及重物C受力如题2-15图所示平衡时,有题2-15图FA=FB=Mg又 FA=k1x1FB=k2x2所以静止时两弹簧伸长量之比为弹性势能之比为2-16 (1)设在距月球中心为r处F月引=F地引,由万有引力定律,有G=G经整理,得r= = =38.3210 m则p点处至月球表面的距离为h=r-r月 =(38.32-1.74)1063.66107 m(2)质量为1 kg的物体在p点的引力势能为 = =-1.282-17 取B点为重
15、力势能零点,弹簧原长为弹性势能零点,则由功能原理,有-m2gh= (m1+m2)v2-m1gh+k(l)2式中l为弹簧在A点时比原长的伸长量,则l=AC-BC=(-1)h联立上述两式,得v=题2-17图2-18 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点则由功能原理,有-frs= k=式中 s=4.8+0.2=5 m,x=0.2 m,再代入有关数据,解得k=1390 Nm-1题2-18图再次运用功能原理,求木块弹回的高度h-fts=mgssin37-kx3代入有关数据,得 s=1.4 m,则木块弹回高度h=ssin37=0.84 m题2-19图2-19 m从M上下滑的
16、过程中,机械能守恒,以m,M地球为系统,以最低点为重力势能零点,则有mgR= 又下滑过程,动量守恒,以m,M为系统则在m脱离M瞬间,水平方向有mv-MV=0联立,以上两式,得v=2-20 两小球碰撞过程中,机械能守恒,有即 题2-20图(a) 题2-20图(b)又碰撞过程中,动量守恒,即有mv0=mv1+mv2亦即 v0=v1+v2 由可作出矢量三角形如图(b),又由式可知三矢量之间满足勾股定理,且以v0为斜边,故知v1与v2是互相垂直的2-21 由题知,质点的位矢为r=x1i+y1j作用在质点上的力为f=-fi所以,质点对原点的角动量为L0=rmv=(x1i+y1j)m(vxi+vyj)=(
17、x1mvy-y1mvx)k作用在质点上的力的力矩为M0=rf=(x1i+y1j)(-fi)=y1fk2-22 哈雷彗星绕太阳运动时受到太阳的引力即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 r1mv1=r2mv22-23 (1) (2)解(一) x=x0+v0xt=4+3=7即r1=4i,r2=7i+25.5jvx=v0x=1即v1=i1+6j,v2=i+11j L1=r1mv1=4i3(i+6j)=72kL2=r2mv2=(7i+25.5j)3(i+11j)=154.5kL=L2-L1=82.5k kgm2s-1解(二) 题2-24图2-24
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 上册 课后 习题 答案 71
限制150内