《等差数列前n项和优秀教案(共5页).doc》由会员分享,可在线阅读,更多相关《等差数列前n项和优秀教案(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上23等差数列的前n项和一、教学目标知识与技能:掌握等差数列前n项和公式;会用等差数列的前n项和公式解决问题。过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律;通过公式推导的过程教学,扩展学生思维。情感态度与价值观:通过公式的推导过程,使学生体会数学中的对称美,促进学生的逻辑思维。二、教学重点等差数列n项和公式的理解、推导及应用三、教学难点灵活应用等差数列前n项公式解决一些简单的有关问题四、教学过程创设情景在200多年前,历史上最伟大的数学家之一,被誉为“数学王子”的高斯就曾经上演了迅速求出等差数列这么一出好戏。那时,高斯的数学老
2、师提出了下面的问题:1+2+3+100=?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+(50+51)=10150=5050.探索研究 我们从高斯那里受到启发,于是用下面的这个方法计算1,2,3,n,的前n项的和:由 1 + 2 + + n-1 + n n + n-1 + + 2 + 1 (n+1)+(n+1)+ +(n+1)+(n+1)可知上面这种加法叫“倒序相加法” 请同学们观察思考一下:高斯的算法妙在哪里? 高斯的算法很巧妙,他发现了整个数列的第k项与倒数第k项的和与首项与尾项的和相等这个规律,并且把这个规律用于求
3、和。这种方法可以推广到求一般等差数列的前n项和。等差数列求和公式的推导 一般地,称为数列的前n项的和,用表示,即.1.思考:受高斯的启示,我们这里可以用什么方法去求和呢?思考后知道,也可以用“倒序相加法”进行求和。 由+,得 由此得到等差数列的前n项和的公式对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。2.把代入中,就可以得到对于这个公式,只要知道等差数列的首项、项数和公差,就可以求出等差数列的前n项和。引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项
4、和与它的首项、公差之间的关系,而且是关于n的“二次函数”,该公式可以变形为,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。例题分析例1、2000年11月14日教育部下发了关于在中小学实施“校校通”工程的统治.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的
5、总投入是多少?、 先阅读题目;、 引导学生提取有用的信息,构造等差数列模型;、 写这个等差数列的首项和公差,并根据首项和公差选择前n项和公式进行求解。解:根据题意,从2001-2010年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列,表示从2001年起各年投入的资金,其中 , d=50.那么,到2010年(n=10),投入的资金总额为 (万元)答:从20012010年,该市在“校校通”工程中的总投入是7250万元.例2已知一个等差数列前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗? 引导学生分析得到:等差数列前
6、n项和公式就是一个关于的方程。若要确定其前n项求和公式,则要确定的关系式,从而求得。分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于与d的二元一次方程,由此可以求得与d,从而得到所求前n项和的公式. 解:由题意知 , 将它们代入公式 得到 解这个关于与d的方程组,得到=4,d=6, 所以另解: 得 所以 -,得, 所以 代入得: 所以有 例题评述:此例题目的是建立等差数列前n项和与解方程之间的联系.已知几个量,通过解方程,得出其余的未知量.例3 已知数列的前n项为,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?解:根据 与 可知,当n1时, 当n=1
7、时, 也满足式. 所以数列的通项公式为. 由此可知,数列是一个首项为,公差为2的等差数列。 这个例题还给出了等差数列通项公式的一个求法.已知前n项和,可求出通项 用这种数列的来确定的方法对于任何数列都是可行的,而且还要注意不一定满足由求出的通项表达式,所以最后要验证首项是否满足已求出的.思考:结合例3,思考课本45页“探究”:一般地,如果一个数列的前n项和为其中p、q、r为常数,且p0,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是什么?引导分析得出:观察等差数列前n项和公式,公式本身就不含常数项。所以得到:如果一个数列前n项和公式是常数项为0,且关于n的二次型函数,则这个数列一定是等差数列.例4 已知等差数列的前n项和为,求使得最大的序号n的值. 分析:等差数列的前n项和公式可以写成,所以可以看成函数 当x=n时的函数值.另一方面,容易知道关于n的图象是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值. 解:由题意知,等差数列的公差为,所以 = 于是,当n取与最接近的整数即7或8时,取最大值.随堂练习课本45页“练习”第1、2、3题课堂小结 等差数列的前n项和的公式和(五)评价设计课本46页A组第2、3、6专心-专注-专业
限制150内