第一章-偏微分方程和一阶线性偏微分方程解(共6页).doc
《第一章-偏微分方程和一阶线性偏微分方程解(共6页).doc》由会员分享,可在线阅读,更多相关《第一章-偏微分方程和一阶线性偏微分方程解(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 偏微分方程和一阶线性偏微分方程解本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。典型的偏微分方程:扩散方程,;波动方程,。这是本课程讨论的主要两类方程。偏微分方程的各类边值条件也是本章讨论的一个重点。1.1 一维空间中的偏微分方程例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(即处在时刻的污染物的密度)。如果流速是,问题:满足什么样的方程?解 如图,在内的流体,经过时间,一定处于。所含污染物应相同,即,由此,从而,。【End】可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。例2
2、(扩散方程) 假设水流静止,在时间内,流经处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为:,所以,在时间段内,通过的污染物为。在时刻和,在内的污染物分别为和,由物质守恒定律由,的任意性,再由,的任意性,。【end】例3 (弦振动方程)假设(1)弦的两端固定(非本质的假设),弦长为,线密度为;(2)外力作用下在平衡位置附近作微小的垂直振动;(3)弦上各点张力方向与弦的切线方向一致,大小服从Hooke定律。问题:建立满足的方程。解 选定弦的一段,(此处),考虑其在时间段内的运动情况。点处的张力记为。沿水平方向合力为;沿垂直方向合力为。显然,水平方向合力为零(假设2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一章 微分方程 一阶 线性
限制150内