2018年高考理科数学第一轮复习教案5函数奇偶性与周期性(共18页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018年高考理科数学第一轮复习教案5函数奇偶性与周期性(共18页).doc》由会员分享,可在线阅读,更多相关《2018年高考理科数学第一轮复习教案5函数奇偶性与周期性(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三节函数的奇偶性及周期性函数的奇偶性及周期性结合具体函数,了解函数奇偶性及周期性的含义知识点一函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是奇函数关于原点对称易误提醒1判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称定义域关于原点对称是函数具有奇偶性的一个必要条件2判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(x)f(x),而不能说存在x0使f(x0)f(x0)、f(x
2、0)f(x0)3分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的必记结论1函数奇偶性的几个重要结论:(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)0.(2)如果函数f(x)是偶函数,那么f(x)f(|x|)(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)0,xD,其中定义域D是关于原点对称的非空数集(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性2有关对称性的结论:(1)若函数yf(xa)为偶函数,则函数yf(x)关于xa对称若函数yf(xa)为奇函数,则函数y
3、f(x)关于点(a,0)对称(2)若f(x)f(2ax),则函数f(x)关于xa对称若f(x)f(2ax)2b,则函数f(x)关于点(a,b)对称自测练习1函数f(x)lg(x1)lg(x1)的奇偶性是()A奇函数 B偶函数C非奇非偶函数 D既奇又偶函数解析:由知x1,定义域不关于原点对称,故f(x)为非奇非偶函数答案:C2(2015石家庄一模)设函数f(x)为偶函数,当x(0,)时,f(x)log2x,则f()()A B.C2 D2解析:因为函数f(x)是偶函数,所以f()f()log2,故选B.答案:B3若函数f(x)x2|xa|为偶函数,则实数a_.解析:f(x)f(x)对于xR恒成立,
4、|xa|xa|对于xR恒成立,两边平方整理得ax0对于xR恒成立,故a0.答案:0知识点二函数的周期性1周期函数对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期2最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期必记结论定义式f(xT)f(x)对定义域内的x是恒成立的若f(xa)f(xb),则函数f(x)的周期为T|ab|.若在定义域内满足f(xa)f(x),f(xa),f(xa)(a0)则f(x)为周期函数,且T2a为它的一个周期对称
5、性及周期的关系:(1)若函数f(x)的图象关于直线xa和直线xb对称,则函数f(x)必为周期函数,2|ab|是它的一个周期(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|ab|是它的一个周期(3)若函数f(x)的图象关于点(a,0)和直线xb对称,则函数f(x)必为周期函数,4|ab|是它的一个周期自测练习4函数f(x)对于任意实数x满足条件f(x2),若f(1)5,则f(f(5)_.解:f(x2),f(x4)f(x),f(5)f(1)5,f(f(5)f(5)f(3).答案:考点一函数奇偶性的判断|判断下列函数的奇偶性(1)f(x);(2)f(x)
6、;(3)f(x)3x3x;(4)f(x);(5)f(x)解:(1)由得x1,f(x)的定义域为1,1又f(1)f(1)0,f(1)f(1)0,即f(x)f(x)f(x)既是奇函数又是偶函数(2)函数f(x)的定义域为,不关于坐标原点对称,函数f(x)既不是奇函数,也不是偶函数(3)f(x)的定义域为R,f(x)3x3x(3x3x)f(x),所以f(x)为奇函数(4)由得2x2且x0.f(x)的定义域为2,0)(0,2,f(x),f(x)f(x),f(x)是奇函数(5)易知函数的定义域为(,0)(0,),关于原点对称,又当x0时,f(x)x2x,则当x0,故f(x)x2xf(x);当x0时,xf
7、(2x1)成立的x的取值范围是()A.B.(1,)C.D.解析:函数f(x)ln(1|x|),f(x)f(x),故f(x)为偶函数,又当x(0,)时,f(x)ln(1x),f(x)是单调递增的,故f(x)f(2x1)f(|x|)f(|2x1|),|x|2x1|,解得x1,故选A.答案:A探究三周期性及奇偶性相结合3(2015石家庄一模)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)1,f(5),则实数a的取值范围为()A(1,4) B(2,0)C(1,0) D(1,2)解析:f(x)是定义在R上的周期为3的偶函数,f(5)f(56)f(1)f(1),f(1)1,f(5),1,即0,解
8、得1a4,故选A.答案:A探究四单调性、奇偶性及周期性相结合4已知定义在R上的奇函数f(x)满足f(x4)f(x),且在区间0,2上是增函数,则()Af(25)f(11)f(80)Bf(80)f(11)f(25)Cf(11)f(80)f(25)Df(25)f(80)f(11)解析:f(x)满足f(x4)f(x),f(x8)f(x),函数f(x)是以8为周期的周期函数,则f(25)f(1),f(80)f(0),f(11)f(3)由f(x)是定义在R上的奇函数,且满足f(x4)f(x),得f(11)f(3)f(1)f(1)f(x)在区间0,2上是增函数,f(x)在R上是奇函数,f(x)在区间2,2
9、上是增函数,f(1)f(0)f(1),即f(25)f(80)f(11)答案:D函数性质综合应用问题的三种常见类型及解题策略(1)函数单调性及奇偶性结合注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性(2)周期性及奇偶性结合此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解(3)周期性、奇偶性及单调性结合解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解2.构造法在函数奇偶性中的应用【典例】设函数f(x)的最大值为M,最小值为m,则Mm_.思路点拨直接求解函数的最大值和最小值很复杂不可取,所以可考虑对函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 理科 数学 第一轮 复习 教案 函数 奇偶性 周期性 18
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内