《圆周运动的描述(共21页).docx》由会员分享,可在线阅读,更多相关《圆周运动的描述(共21页).docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上圆周运动知识回顾前言2例题讲解一、 圆周运动的描述1、拍苍蝇与物理有关市场出售的苍蝇拍,拍把长约,拍头是长、宽的长方形这种拍的使用效果往往不好,拍头打向苍蝇,尚未打到,苍蝇就飞了有人将拍把增长到,结果一打一个准其原因是( )A拍头打苍蝇的力变大了B拍头的向心加速度变大了C拍头的角速度变大了D拍头的线速度变大了【答案】D【解析】由于苍蝇拍质量很小,故可以认为人使用时角速度一定,根据分析即可2、如图所示是自行车传动结构的示意图,其中是半径为的大齿轮,是半径为的小齿轮,是半径为的后轮,假设脚踏板的转速为,则自行车前进的速度为( )ABCD【答案】C【解析】脚踏板的线速度为,
2、小齿轮角速度为,后轮与小齿轮角速度相同,则后轮线速度为,故选C3、如图所示,当正方形薄板绕着过其中心并与板垂直的转动轴转动时,板上两点的( )A角速度之比B角速度之比C线速度之比D线速度之比【答案】A D【解析】板上两点绕同一个转轴转动,所以具有相同的角速度根据得出线速度之比板上两点绕同一个转轴转动,所以具有相同的角速度即角速度之比,故A正确,B错误根据几何关系得板上的轨道半径之比为,所以线速度之比,故C错误,D正确4、如图所示,一圆盘的圆心为,它的转动轴垂直于盘面过,盘的边缘上有两点,已知它们到点的距离之比是当圆盘绕转动轴做匀速转动时,以下说法中正确的是( )A两点的线速度大小之比为B两点的
3、角速度大小之比为C两点的向心加速度大小之比为D两点的转动频率之比为【答案】B【解析】点绕运动一周的同时点也绕运动一周,故TP=TQ根据,可得:,故D错误根据可得:,故B正确根据可得:,故A错误根据可得:5、计算机硬盘内部结构如图所示,读写磁头在计算机的指令下移动到某个位置,硬盘盘面在电机的带动下高速旋转,通过读写磁头读写下方磁盘上的数据磁盘上分为若干个同心环状的磁道,每个磁道按圆心角等分为18个扇区现在普通的家用电脑中的硬盘的转速通常有和两种,硬盘盘面的大小相同,则( )A磁头的位置相同时,的硬盘读写数据更快B对于某种硬盘,磁头离盘面中心距离越远,磁头经过一个扇区所用的时间越长C不管磁头位于何
4、处,的硬盘磁头经过一个扇区所用时间都相等D与的硬盘盘面边缘的某点的向心加速度的大小之比为【答案】A C【解析】磁头位置相同时,转速快的硬盘磁头通过相同扇区用时少,即读写数据更快,故A争取对于某种硬盘其转速一定,则其角速度一定,而扇区是根据圆心角划分的,故通过某扇区的时间与角速度即转速有关,与磁头离盘面中心距离远近无关,故B错误扇区是根据圆心角来划分的,转速一定,则其角速度也一定,所以通过相同扇区即相同圆心角的时间是一定的,与磁头与所处的位置无关,故C正确由题意知转速之比为,角速度之比与转速之比相等,向心加速度,硬盘边缘的向心加速度之比不等于角速度即转速之比,故D错误6、如图所示,甲乙两物体自同
5、一水平线上同时开始运动,甲沿顺时针方向做匀速圆周运动,圆半径为;乙做自由落体运动,当乙下落至点时,甲恰好第一次运动到最高点,求甲物体匀速圆周运动的向心加速度【答案】【解析】根据自由落体运动求出时间,根据等时性求解周期,根据向心加速度定义公式求出向心加速度设乙下落到点的时间为,则对乙满足,得这段时间内甲运动了,即;又由于,由得:二、 向心力分析7、如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的( )A周期相同B线速度的大小相等C角速度的大小相等D向心加速度的大小相等【答案】A C【解析】设圆锥摆的高为,则,故,因两圆锥摆的相同,而不同,故两小球运
6、动的线速度不同,角速度的大小相等,周期相同,向心加速度不同8、如图所示,质量不计的轻质弹性杆插入桌面上的小孔中,杆的另一端套有一个质量为的小球,今使小球在水平面内做半径为的匀速圆周运动,且角速度为,则杆的上端受到小球对其作用力的大小为( )ABCD条件不足,不能确定【答案】B【解析】解决本题的关键知道小球向心力的来源,结合牛顿第二定律和平行四边形定则进行求解小球所受的合力提供向心力,有根据平行四边形定则得,杆子对小球的作用力9、如图所示,绳子的一端固定在点,另一端拴一重物在水平面上做匀速圆周运动( )A转速相同时,绳长的容易断B周期相同时,绳短的容易断C线速度大小相等时,绳短的容易断D线速度大
7、小相等时,绳长的容易断【答案】A C【解析】绳子的拉力提供向心力,再根据向心力公式分析设绳子的拉力为,则,此外,所以,当转速相同,即是周期或角速度相同时,绳长r越大,拉力越大,绳子越容易断,当线速度相同时,绳长越小,拉力越大,绳子越容易断10、如图所示,小球质量为,固定在轻细绳的一端,并随绳一起绕绳的另一端点在竖直平面内做圆周运动如果小球经过最高位置时,绳对球的作用力为拉力,拉力大小等于倍球的重力求:(1)球的速度大小(2)当小球经过最低点时速度为,绳对球的作用力大小和球的向心加速度大小【答案】(1)(2)【解析】(1)小球在最高点时,对球做受力分析,如图所示重力;拉力根据小球做圆运动的条件,
8、合外力等于向心力,即:,解两式,可得(2)小球在最低点时,对球做受力分析重力;拉力,设向上为正根据小球做圆运动的条件,合外力等于向心力,11、如图所示,将一根光滑的细金属棒折成形,顶角为,其对称轴竖直,在其中一边套上一个质量为的小金属环,(1)若固定形细金属棒,小金属环从距离顶点为的点处由静止自由滑下,则小金属环由静止下滑至顶点点时需多少时间?(2)若小金属环随形细金属棒绕其对称轴以每秒转匀速转动时,则小金属环离对称轴的距离为多少?【答案】(1)(2)【解析】(1)设小环沿棒运动的加速度为,由牛顿第二定律得 由运动学公式得 由式得小环运动的时间 (2)设小环离对称轴的距离为,由牛顿第二定律得
9、由式得三、 摩擦力与向心力12、如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲转动无滑动甲圆盘与乙圆盘的半径之比为,两圆盘和小物体之间的动摩擦因数相同,距点为,距点为,当甲缓慢转动起来且转速慢慢增加时( )A滑动前与的角速度之比B滑动前与的向心加速度之比C随转速慢慢增加,先开始滑动D随转速慢慢增加,先开始滑动【答案】D【解析】由题意可知,线速度,又,则,随甲、乙运动,则,由得,所受向心力由摩擦力提供,则,又,故先滑动13、如图所示,水平放置的旋转平台上有一质量的小物块,物块与转轴间系有一劲度系数的轻质弹簧当旋转平台转动的角速度在至之间时物块可与平台一起转动而无相对滑动,此时
10、物块到转轴间的距离据此可判断平台表面_,(选填“一定光滑”、“一定不光滑”或“光滑和不光滑均可能”);轻质弹簧的原长为_【答案】一定不光滑;【解析】假设平台不光滑,根据题意当平台的角速度为时,物体恰不沿半径向里滑动,此时物体所受的静摩擦力沿半径向外,则;当平台的角速度为时,物体恰不沿半径向外滑动,此时物体所受的静摩擦力沿半径向里,则,解得:,随堂练习1、如图所示,放在地球表面上的两个物体甲和乙,甲放在南沙群岛(赤道附近),乙放在北京。它们随地球自转做匀速圆周运动时,甲的角速度_乙的角速度(选填“大于”、“等于”或“小于”):甲的线速度_乙的线速度(选填“大于”、“等于”或“小于”)。【答案】等
11、于;大于【解析】由图可知甲和乙做圆周运动的角速度和周期相同,因为,且乙的转动半径小于甲的转动半径,所以甲的线速度大于乙的线速度。2、如图所示,靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍分别为大、小轮边缘上的点,为大轮上一条半径的中点则( )A各质点角速度关系:B各质点线速度关系:C各质点加速度关系:D以上关系都不正确【答案】A B C【解析】由题意知,据,知,所以,故A正确据,知,所以,故B正确据,又因为,所以,故C正确3、如图所示,一圆环以直径为轴做匀速转动,是环上的三点,则下列说法正确的是( )A向心加速度的大小B任意时刻三点向心加速度的方向不同C线速度D任意
12、时刻三点的线速度方向均不同【答案】C【解析】圆环上各点角速度相等,根据公式,向心加速度与到转动轴的距离成正比,故A错误三点向心加速度的方向均是水平指向轴的,可以看出任意时刻三点向心加速度的方向相同,故B错误由图可知:半径,由可知,线速度,故C正确线速度的方向为该点的切线方向,任意时刻三点的线速度方向均相同,故D错误4、如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球和紧贴着内壁分别在图中所示的水平面内做匀速圆周运动( )A球的角速度一定大于球的角速度B球的线速度一定大于球的线速度C球的运动周期一定小于球的运动周期D球对筒壁的压力一定大于球对筒壁的压力【答案】B【
13、解析】对小球受力分析,受重力和支持力,合力提供向心力,根据牛顿第二定律列式求解即可对小球受力分析,受重力和支持力,如图:根据牛顿第二定律,有,解得,由于A球的转动半径较大,故线速度较大,故A正确,由于球的转动半径较大,故角速度较小,故B正确,由于球的转动半径较大,故周期较大,故C错误由A选项的分析可知,压力等于,与转动半径无关,故D错误5、如图所示,长为L的悬线固定在O点,在O点正下方L/2处有一钉子C,把悬线另一端的小球m向左拉到如图所示的位置并以一定的初速度释放,小球到悬点正下方时离开钉子,下列说法正确的是( )A小球的线速度突然增大B小球的周期突然增大C小球的向心加速度突然增大D悬线拉力
14、突然增大【答案】C D【解析】小球摆下后由机械能守恒可知, ,因小球下降的高度相同,故小球到达最低点时的速度相同,故小球的线速度不变,故A错误小球的向心加速度,故小球的向心加速度增大,故B错误,C正确设钉子到球的距离为,故绳子的拉力,因小于,故有钉子时,绳子上的拉力变大,故D正确6、在用高级沥青铺设的高速公路上,汽车的设计时速是汽车在这种水平路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的倍,试求:(1)如果汽车在这种高速路的水平路面弯道上转弯,其弯道的最小半径是多少?(2)如果弯道的路面设计为倾斜,弯道半径为,要使汽车通过此弯道时不产生侧向摩擦力,则弯道路面的倾斜角度是多少?(用三角函数
15、表示)【答案】(1)(2)【解析】(1)汽车在水平路面上转弯时,可视为匀速圆周运动,其向心力由汽车与路面间的静摩擦力提供,当静摩擦力达到最大值时,对应的半径最小,其中,解得(2)设弯道倾斜角度为,汽车通过此弯道时向心力由重力及支持力的合力提供,有,课后作业1、一皮带传动装置如图所示,左轮的半径为,右侧是一轮轴,小轮的半径为,大轮的半径为,分别是它们边缘上的一点,若在传动过程中,皮带不打滑,则( )A点与点的线速度大小相等B点与点的角速度大小相等C点与点的角速度大小相等D点与点的线速度大小相等【答案】C D【解析】左、右两轮是皮带传动,皮带传动的特点是皮带和轮子接触点的线速度的大小相同,两轮是同
16、轴传动,同轴传动的特点是角速度相同然后根据线速度、角速度、半径之间的关系即可求解同轴传动角速度相等,故点与点的角速度大小相等,故C正确同缘传动边缘点线速度相等,故点与点的线速度大小相等,故D正确点与点线速度相等,转动半径不同,根据公式,加速度不同点与点角速度相同;故点与点的角速度大小不同;故B错误点与点的转动半径相同,但点转动的角速度大,故点的线速度大,故A错误2、一圆盘可以绕其竖直轴在图所示水平面内转动,圆盘半径为,甲、乙物体质量分别是和(),它们与圆盘之间的最大静摩擦力均为正压力的倍,两物体用一根长为()的轻绳连在一起.若将甲物体放在转轴位置上,甲、乙之间连线刚好沿半径方向被拉直,要使两物
17、体与圆盘间不发生相对滑动,则转盘旋转角速度的最大值不得超过(两物体均看作质点)( )ABCD【答案】D【解析】当绳子的拉力等于A的最大静摩擦力时,角速度达到最大,有,所以故D正确,A、B、C错误3、如图所示,长为的细绳的一端系一质量为的小球,另一端悬于光滑的平面上方高处(),球在水平面上以转/秒做匀速圆周运动时,水平面上受到的压力多大?为使球不离开平面,的最大值多大? 【答案】(1)(2)【解析】(1)对小球受力分析,如图:根据牛顿第二定律,水平方向:竖直方向:,联立得:根据牛顿第三定律:(2)小球恰不离开光滑水平面时弹力刚好为零:,得:,则4、一辆质量的小轿车,驶过半径的一段圆弧形桥面,重力加速度求:(1)若桥面为凹形,汽车以的速度通过桥面最低点时,对桥面压力是多大(2)若桥面为凸形,汽车以的速度通过桥面最高点时,对桥面压力是多大(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力【答案】(1)(2)(3)【解析】(1)若桥面为凹形,在最低点有:即汽车对桥的压力为(2)若桥面为凸形,在最高点有:,即汽车对桥的压力为(3)当对桥面刚好没有压力时,只受重力,重力提供向心力,根据牛顿第二定律得:,专心-专注-专业
限制150内