第十五章导数的应用课件.ppt
《第十五章导数的应用课件.ppt》由会员分享,可在线阅读,更多相关《第十五章导数的应用课件.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十五章 导 数 的 应 用(一) 本 章 内 容 小 结(二) 常见问题分类及解法(三) 思 考 题(四) 课 堂 练 习( (一一) ) 本章内容小结本章内容小结一、内容提要一、内容提要1、拉格朗日中值定理及特例,定理的几何解释。2、一阶导数的符号和曲线单调性的关系。3、极值存在的必要条件及利用一阶导数或二阶导数判断极值。4、求函数在闭区间上最大值和最小值,求最值应用题。5、利用二阶导数研究曲线凸凹性和拐点,拐点存在必要条件 及判定。6、利用导数作图。7、利用洛必达法则,求未定式极限。*8、曲率公式,弧长的微分公式。二、重点和难点二、重点和难点 中值定理的应用:曲线的单调性与极值,曲线的凸
2、凹性与拐点及未定式极限为重点,函数的作图是本章难点。三、基本要求三、基本要求1、拉格朗日定理是利用导数来研究函数的性质的理论基础,必须熟记定理的条件和结论及几何意义。2、熟练应用一阶导数,判断曲线的增减性,牢固掌握极值存在的必要条件,运用一阶导数和二阶导数来判定极值。清楚极值与最值的联系与区别。3、清楚二阶导数的几何意义,利用二阶导数判定曲线凸凹性及求拐点。4、能正确熟练运用洛必达法则计算未定式极限,重点掌握00型, 型。5、能正确掌握利用一阶导数和二阶导数研究曲线的性态并能正确做出常见的初等函数图像。四、对学习的建议四、对学习的建议 拉格朗日中值定理是利用导数研究函数的性质的基础理论,因而十
3、分重要,必须弄清它的条件与结论以及几何意义。定理的证明只要求理解。 洛必达法则是求极限的一个有力工具,在应用中须注意以下几点。001、每次使用法则必须检验是不是 , 型。2、使用法则前,函数中若有因式可用无穷小代换,则代换,以便简化计算。3、使用法则后,若有因式其极限可以确定,则应及时剥离求出极限,以利继续使用法则。4、使用洛必达法则中,在适当的环节上可结合其他求极限的方法,以便极限较快求出。另外,法则有时会失效,但不能因此确定函数无极限,可另换他法。 结合实际求最值问题,关键在目标函数的建立,这需要一定的其他领域的知识。目标函数建立的恰当与否,取决于自变量的选取。这一切都需要多做多看一些不同
4、类型的题目,以便培养这方面的能力。 导数在经济问题中的应用,关键在熟悉和掌握各种概念的含义以及它的数学表达式。五、本章关键词五、本章关键词中值定理极值最大值与最小值洛必达法则 作函数的图形是本章内容的大综合,也是本章一个难点。正因为如此,认真的按照规范的步骤做几道作图题,对融会贯通本章知识,了解函数性态,提高作图能力等都是有益的。( (二二) ) 常见问题分类及解法常见问题分类及解法一、利用洛必达法则求未定式一、利用洛必达法则求未定式00对于 型和型的未定式,可以用洛必达法则来求解。需注意的几点如下:0000(1) 不是型或型的未定式需转化成型或型的未定式 后才能应用洛必达法则进行求解。(2)
5、 对于一道题有时需多次应用洛必达法则才能求出结果。00(3) 对某些型或型的极限,有时应用洛必达法则无法求 出结果,这时,就需要考虑其他方法求极限。(4) 注意利用等价无穷小量代换定理,以简化计算过程。例例1 1 求下列极限:0lim cot2(1) ;xxx30sincoslimsin(2) ;xxxxx2201 sincoslimtan(3) ;xxxx解解 00000lim cot2limlimtan2tan2 型 (1) xxxxxxxxx2011lim22sec 2;xx003200sincossinlimlimsin3sincos 型 (2) xxxxxxxxxx0011limli
6、m3sincos3sincosxxxxxxxx00111limlim3sincos3;xxxxx00(3) 属 未定型。直接用洛必达法则,则较繁,可先用等价tan0无穷小的代换定理,因,故xx x2201 sincoslimtanxxxx2201 sincoslimxxxx02sin cossinlim2xxxxx0sin2cos1lim2xxxx3.2二、利用导数判断函数的单调性并求其极值二、利用导数判断函数的单调性并求其极值 函数在某区间内的单调性可以用此函数的一阶导数的正负来判定,进而可以求出函数在其定义域内的极大值和极小值。需注意的是: 有些导数不存在的点也可能是极值点; 在单调区间内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十五章 导数的应用课件 第十五 导数 应用 课件
限制150内