实验一--Matlab编程环境下图像的读取qiaohanyan(共7页).docx
《实验一--Matlab编程环境下图像的读取qiaohanyan(共7页).docx》由会员分享,可在线阅读,更多相关《实验一--Matlab编程环境下图像的读取qiaohanyan(共7页).docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上实验一 Matlab编程环境下图像的读取、存储和显示一、实验目的与要求1熟悉及掌握在MATLAB中能够处理哪些格式图像。2熟练掌握在MATLAB中如何读取图像。3掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。4掌握如何在MATLAB中按照指定要求存储一幅图像的方法。5图像的显示。二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩
2、色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类: 亮度图像(In
3、tensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是0,255和0,65536。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是0,1 (2) 二值图像一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。使用logical函数可以把数值数组转化为二值数组或
4、逻辑数组。创建一个逻辑图像,其语法为: B=logical(A)其中,B是由0和1构成的数值数组。要测试一个数组是否为逻辑数组,可以使用函数: islogical(c)若C是逻辑数组,则该函数返回1;否则,返回0。(3) 索引图像索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。 (4) RGB图像一幅RGB图像就是彩色像素的一个MN3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相
5、对应的红、绿、蓝三个分量。按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。令fR,fG和fB分别代表三种RGB分量图像。一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像: rgb_image=cat(3,fR,fG,fB)在操作中,图像按顺序放置。 2、数据类和图像类型间的转化表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。工具箱中提供了执行必要缩放的函数(见表2)。以在图像类和类型间进行转化。表1-1 MATLAB和IPT支持数据类型名称描述double双精度浮点数,范围
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验 Matlab 编程 环境 下图 读取 qiaohanyan
限制150内