数列常见数列公式(超全的数列公式及详细解法编撰)(共16页).doc
《数列常见数列公式(超全的数列公式及详细解法编撰)(共16页).doc》由会员分享,可在线阅读,更多相关《数列常见数列公式(超全的数列公式及详细解法编撰)(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列常见数列公式(超全的数列公式及详细解法编撰)1等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即=d ,(n2,nN),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) 2等差数列的通项公式: 或 =pn+q (p、q是常数) 3 有几种方法可以计算公差d d= d= d=4等差中项:成等差数列5等差数列的性质: m+n=p+q (m, n, p, q N )等差数列前n项和公式6.等差数列的前项和公式 (1) (2) (3),当d0,是一个常数项为零的二次式8.对等差数列前项和的最值问题有两种方法:(1)
2、利用:当0,d0,前n项和有最大值可由0,且0,求得n的值当0,前n项和有最小值可由0,且0,求得n的值(2) 利用:由二次函数配方法求得最值时n的值等比数列1等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)2.等比数列的通项公式: , 3成等比数列=q(,q0) “0”是数列成等比数列的必要非充分条件4既是等差又是等比数列的数列:非零常数列 5等比中项:G为a与b的等比中项. 即G=(a,b同号).6性质:若m+n=p+q,7判断等比数列的方法:定义法,中项法,通项公
3、式法8等比数列的增减性:当q1, 0或0q1, 1, 0,或0q0时, 是递减数列;当q=1时, 是常数列; 当q0时, 是摆动数列;等比数列前n项和等比数列的前n项和公式: 当时, 或 当q=1时,当已知, q, n 时用公式;当已知, q, 时,用公式.数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例1等差数列是递增数列,前n项和为,且成等比数列,求数列的通项公式.解:设数列公差为成等比数列,即, 由得:,点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。二、公式法若已知数列的前项和与的
4、关系,求数列的通项可用公式求解。例2已知数列的前项和满足求数列的通项公式。解:由当时,有,经验证也满足上式,所以点评:利用公式求解时,要注意对n分类讨论,但若能合写时一定要合并三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。类型1 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。(2004全国卷I.22)已知数列中,其中,求数列的通项公式。P24(styyj)例3. 已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2 (1)递推公式为解法:把原递
5、推公式转化为,利用累乘法(逐商相乘法)求解。(2004全国卷I.15)已知数列an,满足a1=1,an=a1+2a2+3a3+(n1)an1(n2),则an的通项 P24(styyj)例4. 已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,(2)由和确定的递推数列的通项可如下求得:由已知递推式有, ,依次向前代入,得,简记为 ,这就是叠(迭)代法的基本模式。(3) 递推式: 解法:只需构造数列,消去带来的差异例5设数列:,求.解:设,将代入递推式,得()则,又,故代入()得说明:(1)若为的二次式,则可设;(2)本题也可由 ,()两式相减得转化为求之.例6已知, ,求。解
6、: 。类型3 递推公式为(其中p,q均为常数,)。解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。(2006.重庆.14)在数列中,若,则该数列的通项 P24(styyj)例7. 已知数列中,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.类型4 递推公式为(其中p,q均为常数,)。 (或,其中p,q, r均为常数)(2006全国I.22)(本小题满分12分)设数列的前项的和,()求首项与通项; P25(styyj)解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再应用类
7、型3的方法解决。例8. 已知数列中,,,求。解:在两边乘以得:令,则,应用例7解法得: 所以类型5 递推公式为(其中p,q均为常数)。解法:先把原递推公式转化为其中s,t满足,再应用前面类型3的方法求解。(2006.福建.理.22)(本小题满分14分)已知数列满足(I)求数列的通项公式; P26(styyj)例9. 已知数列中,,,求。解:由可转化为即或这里不妨选用(当然也可选用,大家可以试一试),则是以首项为,公比为的等比数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。类型6 递推公式为与的关系式。(或)解法:利用进行求解。(2006.陕西.20) (本小题满分12
8、分) 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an P24(styyj)例10. 已知数列前n项和.(1)求与的关系;(2)求通项公式.解:(1)由得:于是所以.(2)应用类型4的方法,上式两边同乘以得:由.于是数列是以2为首项,2为公差的等差数列,所以类型7 双数列型解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。例11. 已知数列中,;数列中,。当时,,,求,.解:因所以即(1)又因为所以.即(2)由(1)、(2)得:, 四、待定系数法(构造法)求数列通项公式方法灵活多样,特别是对于给定的递推
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 常见 公式 详细 解法 编撰 16
限制150内