《初一数学有理数的乘方、科学计数法知识点及练习(共3页).doc》由会员分享,可在线阅读,更多相关《初一数学有理数的乘方、科学计数法知识点及练习(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1.5有理数的乘方1.5.1乘方1.乘方的定义: 一般地,n个相同的因数a相乘,即aaa,记作an,读作a的n次方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂说明:(1)一个数可以看作是这个数本身的一次方,通常省略指数1不写;如, (2)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;如, (3)乘方是一种运算,幂是乘方运算的结果2. 根据有理数的乘法法则得出有理数乘方的符号规律:(1)负数的奇次幂是负数,负数的偶次幂是正数;注意:当n为正奇数时: (
2、-a)n=-an和(a-b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 和(a-b)n=(b-a)n .(2)正数的任何次幂都是正数;(3)0的任何次幂都是03偶次方的非负性:任何数的偶次方都是非负数.即 典型考点: (重要结论:若多个非负数的和为0,则每个非负数均为0.)1. 已知,则= .2. 已知,则= .4有理数混合运算顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2科学计数法 1.5.3近似数1.科学计数法的定义:一般地,10的n次幂,在1的后面有n个0,这样就可用10的幂
3、表示一些大数,如,6 100 000 0006.11 000 000 0006.1.象上面这样把一个大于10的数记成a的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法.其中1a10的数,n的值等于整数部分的位数减1.2.用科学记数法表示一个数时应注意:(1)首先要确定这个数的整数部分的位数.或说先找到这个数的小数点位置;(2)将这个数的小数点移到第一个不为0的数字后面;(3)在科学记数法中,10的指数比原数的整数位数少1。如原数有6位整数,表示成科学记数法1.3后,10指数就是5.说明:在实际生活中有非常大的数,同样也有非常小的数。本节课强调的是大数可以用科学记数法来表示,实际
4、上非常小的数也同样可以用科学记数法表示,如本章引言中有1纳米109米,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分一。用表达式表示为1米纳米,或者1纳米米米练习1.计算:=_。2.已知,则=_。3. 已知ac0,且|a|b|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+cC.a-b+2c D.-a+3b-3c4.下列结论正确的是()A.近似数1.230和1.23的有效数字一样 B.近似数79.0是精确到个位的数,它的有效数字是7、9C.近似数3.0324有5个有效数字 D.近似数5千与近似数5000的精确度相同4
5、. 如果有理数( ) A. 当 B. C. D. 以上说法都不对5.(m)1010,则一定有( ) A、m0 B、m0 C、m0 D、以上都不对6.一个数的立方等于它本身,这个数是 ( ) A、0 B、1 C、1,1 D、1,1,07.下列各式中,不相等的是 ( ) A、(3)2和32 B、(3)2和32 C、(2)3和23 D、|2|3和|23|8.(1)200(1)201( ) A、0 B、1 C、2 D、29.若a、b、c均为整数,且ab3ca21,求accbba的值10.2010年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A) (B) (C) (D)11.0.035是由四舍五入得到的近似数,指出下列说法正确的是( )A精确到千分位,它有三个有效数字 B精确到万分位,它有四个有效数字C精确到千分位,它有两个有效数字 D精确到百分位,它有两个有效数字12.已知,则= 。13.已知,求的值14.用科学记数法表示= 15.平方得25的数是_,立方得的数是_16.用四舍五入法把 0.36495 精确到0.01 后得到的近似数为 _ ,有 _个有效数字。17.在下列数:(),42,9,(1)2004 , 0 中,正数有a个,负数有b个,正整数有c个,负整数有d个,则 abcd的值为( )A8 B.9 C.10 D.11 专心-专注-专业
限制150内