勾股定理单元复习与巩固(共13页).doc
《勾股定理单元复习与巩固(共13页).doc》由会员分享,可在线阅读,更多相关《勾股定理单元复习与巩固(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上勾股定理单元复习与巩固-6月10日知识网络目标认知学习目标:1、了解勾股定理的历史,经历勾股定理的探索过程;2、理解并掌握直角三角形中边角之间的关系;3、能应用直角三角形的边角关系解决有关实际问题重点:勾股定理及其逆定理的应用难点:勾股定理及其逆定理的应用知识要点梳理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段
2、平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2c2,那么这个三角形是直角三角形。要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2a2+b2,则ABC是以C为直角的直角三角形 (若c2a2+b2,则ABC是以C为钝角的钝角三角形;若c2a2+b2,则ABC为锐角三角形)。知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。知
3、识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。规律方法指导1勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。2勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。3勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错 误。4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2c2,那么这个三角形是直 角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法5.应用勾股定理的
4、逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加 深对“数形结合”的理解经典例题精析类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。思路点拨:在直角三角形中知道两边的比值和第三边的长度,求面积,可以先通过比值设未知数,再根据勾股定理列出方程,求出未知数的值进而求面积。解析:设此直角三角形两直角边分别是3x,4x,根据题意得: (3x)2+(4x)2202 化简得x216; 直角三角形的面积3x4x6x296总结升华:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。举一反三【变式1】等
5、边三角形的边长为2,求它的面积。【答案】如图,等边ABC,作ADBC于D则:BDBC(等腰三角形底边上的高与底边上的中线互相重合)ABACBC2(等边三角形各边都相等)BD1在直角三角形ABD中,AB2AD2+BD2,即:AD2AB2BD2413ADSABCBCAD注:等边三角形面积公式:若等边三角形边长为a,则其面积为a。【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。【答案】设此直角三角形两直角边长分别是x,y,根据题意得:由(1)得:x+y7,(x+y)249,x2+2xy+y249 (3)(3)(2),得:xy12直角三角形的面积是xy126(cm2)【变式3】
6、若直角三角形的三边长分别是n+1,n+2,n+3,求n。思路点拨:首先要确定斜边(最长的边)长n+3,然后利用勾股定理列方程求解。解:此直角三角形的斜边长为n+3,由勾股定理可得:(n+1)2+(n+2)2(n+3)2化简得:n24n2,但当n2时,n+110,n2总结升华:注意直角三角形中两“直角边”的平方和等于“斜边”的平方,在题目没有给出哪条是直角边哪条是斜边的情况下,首先要先确定斜边,直角边。【变式4】以下列各组数为边长,能组成直角三角形的是( )A、8,15,17 B、4,5,6 C、5,8,10 D、8,39,40解析:此题可直接用勾股定理的逆定理来进行判断,对数据较大的可以用c2
7、a2+b2的变形:b2c2a2(ca)(c+a)来判断。例如:对于选择D,82(40+39)(4039),以8,39,40为边长不能组成直角三角形。同理可以判断其它选项。【答案】:A【变式5】四边形ABCD中,B=90,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。解:连结ACB=90,AB=3,BC=4AC2=AB2+BC2=25(勾股定理)AC=5AC2+CD2=169,AD2=169AC2+CD2=AD2ACD=90(勾股定理逆定理)S四边形ABCD=SABC+SACD=ABBC+ACCD=36类型二:勾股定理的应用2、如图,公路MN和公路PQ在点P处交汇,且QPN
8、30,点A处有一所中学,AP160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒? 思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。解析:作ABMN,垂足为B。在 RtABP中,A
9、BP90,APB30, AP160, ABAP80。 (在直角三角形中,30所对的直角边等于斜边的一半)点 A到直线MN的距离小于100m,这所中学会受到噪声的影响。如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC100(m),由勾股定理得: BC21002-8023600, BC60。同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD100(m),BD60(m),CD120(m)。拖拉机行驶的速度为 : 18km/h5m/st120m5m/s24s。答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒。总结升华:勾股定理是求线段
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 单元 复习 巩固 13
限制150内