函数的单调性-教案教学设计(共9页).docx
《函数的单调性-教案教学设计(共9页).docx》由会员分享,可在线阅读,更多相关《函数的单调性-教案教学设计(共9页).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数的单调性课题:1.3.1教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性教学重点:函数的单调性及其几何意义教学难点:利用函数的单调性定义判断、证明函数的单调性教学过程:一、引入课题通过最近比较热门话题的股票作为引题,用上证指数随时间的“跌”、“涨”以及人们往往都会在涨到最高点卖出在最低点买进,形象刻画本课的要讲授的概念:函数的单调性以及最大最小值。师:函数的性质的应用就在我们的生活中,我们的周边,如一天气温随时间的变化等。那我们今天就先来学习函
2、数的单调性。1画出下列函数的图象,观察其变化规律:1)f(x)=x1从左至右图象上升还是下降_?2在区间_上,随着x的增大,f(x)的值随着_2)f(x)=-2x+11从左至右图象上升还是下降_?2在区间_上,随着x的增大,f(x)的值随着_3)f(x)=x21在区间_上,f(x)的值随着x的增大而_2在区间_上,f(x)的值随着x的增大而_问题设计的目的大体从三个层次上展开。首先画出图像并观察图像,描述变化规律,如上升、下降,从几何直观角度加以认识;然后,结合图、表,用自然语言描述,即y随x的增大而增大(或减小);最后,用数学符号语言描述变化规律,逐步实现用精确的数学语言刻画函数的变化规律。
3、问题链的设计由具体到抽象,由特殊到一般,由远及近,一步一步地促使学生形成概念。问题1:列表描点,画函数f(x)x2的图像。x432101234f(x)x216941014916意图:列表描点(自变量取值总是从小到大的选取,这与考察函数单调性时自变量总是从小到大取值是一致的,这也是学生早就熟悉的。这样可以不必讨论,函数在某区间上递增是指从左到右的问题),通过计算函数值可以体验当自变量从小到大取值时,对应的函数值的大小变化规律。说明:教师可以按照p37来excel画图。问题2:利用画出的图像,请描述函数值增减变化特征。从函数图像及上述表格可以看出(这并不困难):图象在y轴左侧“下降”,也就是,在区
4、间上,随着x的增大,相应的f(x)反而减小;图象在y轴右侧“上升”,也就是,在区间上,随着x的增大,相应的f(x)也随着增大。意图:几何直观,引导学生关注图形所反映出的特征。借助图像,体验自变量从小到大变化时,函数值大小变化在图形上的表现。问题3:当x从小到大变化时,y的值如何变化?意图:是对前一个问题(直观)的再一次概括,一次自然语言描述。而且,既不能说随着x的增大y增大,也不能说随着x的增大y减小。学生必须分段回答这个问题,体验函数的这一特征是函数的局部特征。问题4:比较下列各数的大小。22,32,42,(4.5)2,(5.1)2,(6.3)2。就x在(0,+)从小到大取值时,具体讨论函数
5、值的大小变化。这不难得到223242(4.5)2(5.1)2(6.3)2。显然有:当0x1x2x3x4x5x6时,有0xxxxxx时,即0y1y2y3y4y5y6。意图:由具体的数字特征逐步向抽象的符号描述过渡。问题5:对于函数一个函数f(x),如果12时,有f(1)f(2),能否说函数f(x)在区间(1,2)上递增呢?问题6:函数f(x),对于(0,)上的无数个自变量的值x1,x2,x3,当0x1x2x3时,有0y1y2y3,能否说函数f(x)在(0,)上递增呢?请画图说明。意图:这两个问题的目的是,逐步由“静态”、“有限”向“动态”、“无限”过渡。回答这些问题需要一定的抽象思维。问题6引导
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性 教案 教学 设计
限制150内